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Abstract

This study fills a void in the literature by providing the first evaluation of the impact of
consumer ratings on beer prices using hedonic methods. Our work is based on a dataset
consisting of over 400 beers and includes information on calorie content, alcohol content,
user rating, and style for each beer. Our results indicate that a 10-point increase in
consumer rating is associated with about a $0.50 increase in the price of beer per unit.
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Background
According to a 2014 report by U.S. News & World Report, worldwide beer consumption tops

that of wine by a wide margin, with the former amounting to 187 billion liters per year while

the latter totals only 24 billion liters annually (Soergel 2014).1 China tops the world’s annual

beer consumption ranking at 44.2 million kiloliters consumed, followed by the USA (24.2

million kiloliters), Brazil (12.8 million kiloliters), Russia (10.6 million kiloliters), and Germany

(8.6 million kiloliters). In terms of per capita consumption, nine of the top 10 beer-

consuming countries reside in Europe, led by the Czech Republic, whose typical citizen

consumes 418 bottles (12 oz) per year.2 Despite the worldwide popularity of beer, scholarly

study of beer lags far behind that of wine, as represented by the lengthy list of hedonic pri-

cing studies of various aspects of wine that have appeared in the economics literature over

the past two decades (e.g., Nerlove 1995, Combris et al. 1997, Landon and Smith 1997, 1998,

Anderson and Schamel 2003, Fogarty 2006, Lima 2006, Costanigro et al. 2007, and

Costanigro et al. 2009).3

Given the importance of beer style variety to consumers of beer, an understanding of

the impact on demand of the various characteristics of beer is essential to breweries

and retailers. To date, however, the economics literature includes relatively little

research using hedonic methods to evaluate beer pricing.4 For example, in an unpub-

lished study, Schamel (2009) uses a hedonic model to explain variations in beer prices

(per pint) across major cities around the world using attributes and demographics of

the city.5 More recently, Empen and Hamilton (2015) estimate the effect of games

played during the German Bundesliga (soccer) season on the price of beer. Neither of
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these studies, however, shines any substantial light on the importance of various beer

characteristics on the prices of domestic and foreign beers.

Going beyond the basic relationship between beer characteristics and beer prices,

as firm success in the market for beer relies on repeat purchase behavior, con-

sumer ratings of beer can, given the sequential nature of its consumption, play a

useful role in combating the issue of asymmetric information, thus substantially

increasing the economic welfare of beer consumers. We are not aware of a study

that examines the impact of consumer ratings on beer prices. This study addresses

the aforementioned void in the economics literature by employing beer-level data

in order to estimate a hedonic price regression model for beer. We investigate the

impact of both beer characteristics and consumer ratings on beer prices. Using

information from over 400 different beers, we find that, ceteris paribus, higher

consumer ratings are associated with higher prices, such that a 10-point increase

in an average consumer rating is associated with about a 50-cents increase in the

price of a unit (i.e., a six-pack) of beer.

The consumption of beer, much like that of diamonds (see Lee et al. 2014), involves

sensory characteristics, such as taste (flavor), weight, and aroma. As such, consumer

evaluation of a good such as beer is tied to the economics of information, which has,

beginning with the pioneering work of Stigler (1961), Nelson (1970), and Spence

(1973), become an important facet of modern microeconomic theory over the past half

century. Since these seminal studies, research has shown that, in addition to determining

the number and type of informational cues appearing in seller-provided advertisements,

the types and characteristics of goods play an important role in pricing. Following Nelson

(1970, 1974), search goods are those for which consumers are able to make pre-purchase

judgments regarding product attributes/quality at relatively low cost, while experience

goods are those for which such judgments can be made by consumers only post-

purchase.6

The seminal studies comprising the economics of information connect to a more

recent study by Che (1996), including an extension by Mixon (1999), that explores con-

sumer learning implications through a mathematical model wherein consumers realize

idiosyncratic valuations of the good, such as “buyer’s remorse,” only after purchase. Fol-

lowing Che (1996), we assume a risk-neutral, profit-maximizing monopoly seller facing

a unit mass of customers (consumers) that incurs retail costs of c ∈ [0, v *] for each unit

of the good (beer), including payments to a distributor. The consumers’ preferences for

the good (beer) are unknown pre-purchase but are learned post-purchase. A con-

sumer’s preference is parameterized by a “valuation,” v, that is drawn randomly from

v� ; v�
� �

; 0 ≤ v� < v� , by a distribution function, F(·), which has a well-defined positive

density function, f(·) (Che 1996, p. 18). Che (1996, p. 18) notes also that consumers are

ex ante identical and that their ex post realized valuations are purely idiosyncratic. Che

(1996, pp. 18–19) also considers a simple return policy with a cash refund for any re-

turn, which consumers can implement at zero cost.

The von Neumann utility function described in Che (1996, p. 19), which repre-

sents a consumer purchasing a good at price p and realizing v, is U(v–p), where

U(·) is strictly increasing, is (weakly) concave, and exhibits constant absolute risk

aversion. The utility from “no purchase” is normalized to be 0, such that U(0) = 0
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(Che 1996, p. 19). Employing a von Neumann utility function and a “no return” policy,

the seller’s profit is inversely related to the degree of consumer aversion. The consumer

will purchase the good (beer) if (and only if) E[U(v–p)] ≥ 0, where U and p represent

utility and price, respectively. Given this, the seller sets a price that covers costs or else

chooses not to sell the good (Che 1996, pp. 18–19). Therefore, the optimal price, pn, satis-

fies E[U(v–pn)] = 0. Here, (beer) consumers bear the entire risk associated with their ex

post valuation, and as risk aversion increases, the seller must lower the price to compen-

sate (beer) consumers for the risk (Che 1996, p. 19).

Given the descriptions accompanying the goods/services included within the search-

experience goods typology, sellers and buyers have, respectively, devised profit-

maximizing and acquisition cost-minimizing strategies for overcoming the relatively

high pre-purchase costs associated with the evaluation of experience goods such as

those described in Che (1996), Mixon (1999), and the current study. Regarding the set

of strategies implemented in the experience goods case, studies have shown that seller-

provided informational cues in print advertisements relate indirectly to the attributes of

the good by conveying information on various quality-related characteristics of the

seller, such as years of service (experience) and licensures/certifications (Mixon 1995).

Additionally, consumer ratings can play a useful role in combating the issue of asymmetric

information discussed in the seminal work of Akerlof (1970) by alerting potential consumers

of an experience good to its high-quality (low-quality) attributes.7 In this regard, the sequen-

tial consumption facilitated by the use of consumer reviews has proven to be helpful in low-

ering the relatively high pre-purchase evaluation costs typically associated with experience

goods. In the following section of this study, the impact of consumer reviews on the pricing

of beer is examined by testing a hedonic pricing model using a large set of beer-level data.

Methods
The recent uptick of interest in beer has resulted in the emergence of beer community

websites such as beeradvocate.com, ratebeer.com, and The Opinionated Beer Page. These

websites offer information about beers and allow consumers to generate feedback on their

favorites. The dataset for this study is drawn from the website www.beer.findthebest.com

(referred to hereafter as Find the Best), which aggregates data from beeradvocate.com,

ratebeer.com, and The Opinionated Beer Page. Find the Best provides characteristics of

beers including country of origin, style, average prices, calories, and alcohol content. In

addition to these characteristics, which form the foundation of our hedonic pricing model

detailed below, Find the Best also provides a “Smart Rating” for most beers. The “Smart

Rating” is a weighted average score—between 0 and 100, with higher scores indicating

more preferred beers—based on user reviews from the three websites listed above.

After acquiring data from Find the Best and deleting observations with missing vari-

ables, our final dataset includes information on 413 different beers. Summary statistics

for our dataset are provided in Table 1. Our specification is

AvgPricei ¼ αþ βAvgRatingi þ
Xk
j¼1

γ jBeerCharactji þ
Xm

l¼1

δlBeerStyleli þ εi; ð1Þ

where the dependent variable, AvgPricei, is the average price of a unit (i.e., a six-pack)

of each beer, i, as reported by vendors. The range for AvgPricei in our dataset is $4 to
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$42, with a mean value of $9.54. Next, AvgRatingi is a weighted average of aggregate

ratings for each beer, i, that ranges from 50 to 91 in our dataset. The mean rating for

the beers in the dataset is 77.58.

Two separate vectors of beer characteristics variables are included on the right-hand

side of (1). The first of these, BeerCharactji, is a vector of k hedonic pricing characteris-

tics variables, j, for each beer, i, in our study. Included in this vector are the variables

AlcoholVoli, Caloriesi, and Country. The first of these, AlcoholVoli, is a measure of the

alcohol content by volume for each beer. In our dataset, AlcoholVoli has a minimum

value of 2.7 %, a maximum value of 15 %, and an average value of 6.1 %, as indicated in

Table 1. Next, Caloriesi is the number of calories in a bottle of each beer, i, in our sam-

ple. This variable ranges from 55 to 450, with a mean of about 184.1 (see Table 1).

Using the information provided on the country of origin, we created the dummy vari-

able Americani. This variable takes on the value 1 if beer i originates from the USA

and 0 otherwise. Our sample contains 370 beers produced in the USA and 43 foreign

beers representing 20 countries. This domestic-to-foreign ratio is the same ratio for all

beers represented on Find the Best.

A beer style is “a label given to a beer that describes its overall character and often

times its origin (beeradvocate.com).” An ale is a category of beer style that uses yeast

that ferments at the “top” of the fermentation vessel at temperatures between 60 and

75 °F, which are temperatures high enough to promote fermentation in 7 days. Ale

yeast is recognized for producing distinctive aromas, such as apple, pear, pineapple,

grass, hay, plum, and prune (beeradvocate.com). A lager is a category of beer style that

uses yeast that ferments at the “bottom” of the fermentation vessel at a temperature of

34 °F. Given that lager produces fewer aroma by-products than ales, other flavors, such

as hops, are dominant (beeradvocate.com). Beer styles are well represented in the data,

Table 1 Sample statistics

Variable American Foreign All

AvgPrice 9.589 (3.34) 9.140 (2.02) 9.542 (3.23)

AvgRating 78.49 (7.33) 69.74 (8.85) 77.58 (7.95)

AlchoholVol 6.228 (1.59) 5.079 (0.95) 6.109 (1.58)

Calories 188.6 (45.99) 145.2 (22.79) 184.1 (49.67)

American – – 0.896 (0.31)

AmericanAle 0.497 (0.50) 0.000 (0.00) 0.446 (0.50)

AmericanLager 0.084 (0.28) 0.302 (0.46) 0.107 (0.31)

BelgianAle 0.114 (0.32) 0.140 (0.35) 0.116 (0.32)

CzechLager 0.019 (0.14) 0.023 (0.15) 0.019 (0.14)

EnglishAle 0.116 (0.32) 0.023 (0.15) 0.107 (0.31)

EuropeanLager 0.008 (0.09) 0.256 (0.44) 0.034 (0.18)

GermanAle 0.046 (0.21) 0.023 (0.15) 0.044 (0.20)

GermanLager 0.073 (0.26) 0.093 (0.29) 0.075 (0.26)

IrishAle 0.014 (0.12) 0.093 (0.29) 0.075 (0.15)

ScottishAle 0.014 (0.12) 0.023 (0.15) 0.015 (0.12)

Specialty 0.014 (0.12) 0.023 (0.15) 0.017 (0.13)

Nobs 370 43 413

Figures above are means (standard deviations)
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with 11 different beer styles including American Ale, American Lager, Belgian Ale,

Czech Lager, English Ale, European Lager, German Ale, German Lager, Irish Ale,

Scottish Ale, and Specialty. To capture these, BeerStyleli is a vector of m beer style dummy

variables, l, for each beer, i, in our study. The dummy variables included in this vector are

AmericanAlei (0.445), AmericanLageri (0.107), BelgianAlei (0.116), CzechLageri (0.019), Eng-

lishAlei (0.106), EuropeanLageri (0.034), GermanAlei (0.044), GermanLageri (0.075), IrishAlei
(0.022), ScottishAlei (0.015), and Specialtyi (0.017), with the ratios in parentheses indicating

the portion of our dataset accounted for by each beer style, as also indicated in Table 1. In

terms of empirical estimation of (1) above, AmericanAlei serves as the omitted style of beer.

Based on previous research on wine prices, as well as the arguments like those in

Tabarrok and Cowen (2015a, 2015b) concerning the usefulness of consumer ratings in

mitigating asymmetric information problems, we expect the coefficient for AvgRatingi to

be greater than 0. We expect the coefficient of AlcoholVoli to be greater than 0, indicating

that an increase in alcohol content leads to an increase in price. Due to the presence of

beers from very large domestic breweries in our sample, we expect American beers to be

cheaper than foreign beers, holding other attributes constant. As such, the coefficient esti-

mate attached to the variable Americani is expected to be less than 0. Similarly, beers that

are more expensive to produce, such as specialty beers, should exhibit higher than average

prices, meaning that coefficient estimate attached to the variable Specialtyi is expected to

be greater than 0. Lastly, statistically significant beer style coefficients, as captured by the

variables in the second vector of (1), will simply reflect differences in consumer prefer-

ences. Each of the aforementioned hypotheses is tested in the next section of the study.

Results and discussion
The results from econometric estimation of (1) are presented in Table 2, beginning with

the results from an unrestricted version of the model in column 2 of the table. The F-stat-

istic for this model is 3.78, indicating that the regressors are jointly significant in explain-

ing variations in beer prices. The regressors also work to account for about 12 % of the

variation in AvgPrice, as indicated by the R2 of 0.117.8 In terms of the individual determi-

nants, however, only two variables—AvgRating and AmericanLager—retain their expected

signs and are statistically significant, even if only marginally so. While the coefficient of

AvgRating, which is the main focus of this study, indicates that a 10-point increase in the

average consumer rating for a beer results in an increase in price of about $0.50 per unit

(i.e., a six-pack), the relatively poor performance of the regression model indicates the

possibility that influential observations are present. A cursory exploration of this possibil-

ity revealed that the average price of six beers in our sample is $9.54, with a standard devi-

ation of $3.23. Additionally, our exploration also revealed that the highest price for six

beers in our sample is $42, which is about 10 standard deviations above the mean.

To more formally investigate the concern that our findings are being influenced by a

few observations, we used the DFFITS criterion to search for the presence of influential

observations (Belsley et al. 2013). The DFFITS criterion is given by

DFFITS ¼ ŷi−ŷi ið Þ
s ið Þ

ffiffiffiffiffi
hii

p ; ð2Þ

where the ŷi are the prediction points with and without each observation included in

the regression, s(i) is the standard error estimated without the observation included,
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and hii is the leverage for the observation, which is a measure of the distance from the

other independent variables in the sample. We excluded each observation with an abso-

lute DFFITS value greater than 2
ffiffi
P
n

q
, where P is the number of parameters and n is the

number of observations (Belsley et al. 2013). Application of this criterion led to the

omission of 13 influential observations, reducing our sample to 400 observations.

The econometric results for the re-estimated full model are given in column 3 of

Table 2. The F-statistic for this model is 9.56, again indicating that the regressors are

jointly significant in explaining variations in beer prices. In this case, the regressors work

to account for about 22 % of the variation in AvgPrice, as indicated by the R2 of 0.223. The

coefficient estimates of AvgRating, AlcoholVol, American, AmericanLager, CzechLager,

and IrishAle are now each statistically significant at the 0.05 level or better. The negative

coefficient estimate for CzechLager is not surprising given the concentration of beer

production in that country, with the concomitant economies of scale that lead to lower

average production costs (Ruddick 2015). The insignificance of EnglishAle and ScottishAle,

which are in some cases positively signed (see Table 2), reflect the growth in craft brewing

in the UK, where the number of breweries has grown by 50 % in the last 5 years and

where 90 % of breweries produce fewer than 5000 hl per year (Ruddick 2015).

The coefficient of our main variable, AvgRating, remains statistically significant and

changes little from the estimate obtained using the full sample. The estimate of 0.047

indicates that a 10-point increase in consumer ratings results in an increase in the price

of beer per unit of $0.47. The coefficient estimate for AlcoholVol is statistically

Table 2 Hedonic pricing regression results

Dependent variable

AvgPrice AvgPrice AvgPrice

Regressor (1) (2) (3)

Constant 9.944‡ (1.68) 4.290* (3.31) 3.866* (3.31)

AvgRating 0.054‡ (1.74) 0.047* (2.73) 0.050* (3.21)

AlcoholVol 0.444 (1.60) 0.341† (2.04) 0.349* (4.07)

Calories −0.002 (−0.18) 0.000 (0.08)

American −0.736 (−1.22) −0.696† (−2.54) −0.566† (−2.29)

AmericanLager −1.197‡ (−1.65) −1.081* (−2.93) −0.949* (−2.85)

BelgianAle −0.754 (−1.48) −0.262 (−0.73)

CzechLager −1.501 (−1.32) −1.137* (−3.27) −1.067* (−3.39)

EnglishAle −0.465 (−0.90) −0.008 (−0.03)

EuropeanLager −0.321 (−0.31) −0.333 (−0.82)

GermanAle −0.161 (−0.21) 0.256 (0.60)

GermanLager −0.688 (−1.13) 0.269 (0.78)

IrishAle 0.679 (0.62) −0.586† (−2.03) −0.456‡ (−1.85)

ScottishAle −0.139 (−0.11) 0.542 (1.37)

Specialty 1.007 (0.78) 0.879‡ (1.74) 0.975† (1.99)

F-statistic 3.78* 9.56* 14.71*

R2 0.117 0.223 0.218

Nobs 413 400 400

Figures in parentheses are t-ratios based on robust standard errors (White 1980)
Level of significance: *0.01; †0.05; ‡0.10
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significant in this specification as well, indicating that higher alcohol content is associ-

ated with higher beer prices. As a form of sensitivity analysis, this version of the model

was re-run replacing AvgPrice and AvgRating with logAvgPrice and logAvgRating, re-

spectively.9 In this case, the regressors remain jointly significant in explaining variations

in beer prices, based on an F-statistic of 8.93. Moreover, the coefficient estimate for

logAvgRating is also positive and statistically significant (at the 0.01 level), thus con-

firming the prior result in model (2) of Table 2. In terms of the other results, coeffi-

cients for American, AmericanLager, and CzechLager are each negative and significant

at the 0.01 level, representing a slight improvement over the model (2) results in

Table 2. The estimate for IrishAle remains negative but is significant at only the 0.10

level in this case, while AlcoholVol is no longer significant in the log specification.

However, the positive coefficient for ScottishAle is significant (at the 0.05 level) when

combined with logAvgPrice and logAvgRating.

Lastly, in order to examine a more parsimonious specification, we re-estimated the

previous model without the variables associated with the insignificant coefficients. The

results from estimating this model are given in column 4 of Table 2. The F-statistic

increases to 14.71, while the R2 falls only marginally, to 0.218. Again, the coefficient es-

timate for AvgRating changes only slightly from the prior model. Both models indicate

that a 10-point increase in consumer ratings results in an increase in the price of beer

per unit of about $0.50.

Although the results in the last two columns of Table 2 provide some indication as to

the significance of various beer styles in explaining beer prices—with American lager,

Czech lager, and Irish ale each priced significantly below American ale—we investigate

the importance of beer styles more finely by testing the differences in the parameter

estimates in model 2 of Table 2. The results of these tests for various styles of ale are

presented in Table 3. As indicated there, Scottish ale is significantly more expensive

than either American Ale or Belgian ale, while Irish ale is priced significantly below

each other styles of ale with the lone exception of Belgian ale. Similar comparisons are

made for lager, with the results shown in Table 4. As indicated there, both European

lager and German lager are significantly more expensive than either American lager or

Czech lager, while the estimated price difference of $0.602 between the former two la-

gers (i.e., European and German) is marginally insignificant.

Conclusions
This study is the first to investigate the impact of user ratings on the pricing of beer

using a hedonic regression model and a large dataset consisting of beer-level data.

Table 3 Ale price difference estimates

ScottishAle GermanAle AmericanAle EnglishAle BelgianAle

GermanAle 0.286 (0.49)

AmericanAle 0.542 (1.37) 0.256 (0.60)

EnglishAle 0.550 (1.15) 0.264 (0.52) 0.008 (0.03)

BelgianAle 0.804 (1.51) 0.518 (0.93) 0.262 (0.73) 0.254 (0.57)

IrishAle 1.128 (2.30) 0.842 (1.63) 0.586 (2.03) 0.578 (1.47) 0.324 (0.70)

In each case, the parameter difference is calculated by subtracting the parameter estimate for the variable in a given row
from that for the variable at the head of the column. Figures in parentheses are t-ratios. Italic font denotes the 0.10 level
(or better) of significance (one-tailed test)
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Based on the theoretical construct provided by the economics of information, and in-

cluding in the empirical analysis independent variables such as calorie content, alcohol

content, consumer ratings, and dummy variables for beer style, econometric results

suggest that consumer ratings are positively and significantly related to beer prices

across all specifications. More specifically, our results indicate that a 10-point increase

in consumer ratings leads to about a $0.50 increase in the price of a beer per unit.

The econometric results presented in this study suggest that manufacturers and re-

tailers of experience goods, such as beer, should encourage the further development of

“information markets” where consumers are able to provide information about product

attributes to potential future consumers. Additionally, the positive and significant find-

ings for consumer ratings in this study suggest that beer distributors and retailers might

benefit from placement of consumer ratings information in advertisements and other

product-related media. This type of information cue could exist alongside other, more

indirect, cues about the attributes of the product. Future research on the prevalence of

this phenomenon would represent a useful extension of the empirical research in this

particular genre of the economics literature.

Endnotes
1These totals translate to two bottles of beer consumed for every glass of wine con-

sumed (Soergel 2014).
2The exception is Venezuela, which ranks eighth among all countries (Soergel 2014).
3Some of the earlier hedonic pricing studies in this genre have examined the impact

of user-generated feedback. Nerlove (1995) and Combris et al. (1997), for example, find

that taster evaluations of wine are statistically insignificant, while studies by Landon

and Smith (1997, 1998) and Anderson and Schamel (2003) find that long-term reputa-

tion and vintage ratings significantly influence the amount consumers who are willing

to pay for wine.
4Some studies are on the periphery of hedonic price modeling. For example, Lopez

and Matschke (2012) examine 30 brands of beer sold in 12 US cities over the 1988–

1992 period in order to test the impact of certain beer characteristics (e.g., alcohol con-

tent, calories), including beer prices, on consumer satisfaction (utility). Other studies

fall further from the hedonic pricing genre, such as Tomlinson and Branston (2014),

which uses macro-level data to estimate price elasticities in the UK beer market.
5Schamel includes Anholt’s City Brand Index and relative price levels measured by

the Big Mac Index. Employing price data from PintPrice.com, Schamel (2009) finds that

a one-point increase in the attractiveness of the city increases the price of beer by

about 8 cents and that the relative price level in a city is positively correlated with a

beer’s price.

Table 4 Lager price difference estimates

GermanLager EuropeanLager AmericanLager

EuropeanLager 0.602 (1.13)

AmericanLager 1.350 (2.67) 0.748 (1.36)

CzechLager 1.406 (2.87) 0.804 (1.50) 0.056 (0.11)

In each case, the parameter difference is calculated by subtracting the parameter estimate for the variable in a given row
from that for the variable at the head of the column. Figures in parentheses are t-ratios. Italic font denotes the 0.10 level
(or better) of significance (one-tailed test)
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6Darby and Karni (1973) consider a third category of goods—credence goods—which

comprise those goods and services for which even post-purchase judgments may be dif-

ficult, if not impossible, for consumers.
7For an insightful discussion on the role played by consumer reviews and other mecha-

nisms in battling asymmetric information, see Tabarrok and Cowen (2015a, 2015b).
8As we are interested in explaining variations in beer prices on the basis of their char-

acteristics, not predicting them, the F-statistic is much more appropriate than R2 as a

measure of the quality of our empirical modeling.
9For brevity, these results are not reported in Table 2.
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