Skip to main content

Advertisement

Table 5 Single commodity partial equilibrium model of the Indonesian oil palm

From: Risks and opportunities from key importers pushing for sustainability: the case of Indonesian palm oil

Commodity demand equations
\( {\widehat{D}}_y^M=\left(1-{\alpha}_y^{\mathrm{EU}}-{\alpha}_y^{\mathrm{ROW}}\right)\ {\widehat{D}}_{\mathrm{y}}^{\mathrm{Dom}}+{\alpha}_y^{\mathrm{EU}}{\widehat{D}}_y^{\mathrm{EU}}+{\alpha}_y^{\mathrm{ROW}}{\widehat{D}}_y^{\mathrm{ROW}} \) 1
\( {\widehat{D}}_y^D=\left({\widehat{P}}_y^M-{\widehat{U}}_y^{\mathrm{Dom}}\right){\varepsilon}_y^{\mathrm{Dom}} \) 2
\( {\widehat{D}}_y^{\mathrm{EU}} = \left({\widehat{P}}_y^{\mathrm{EU}}-{\widehat{U}}_y^{\mathrm{EU}}\right)\ {\varepsilon}_y^{\mathrm{EU}} \) 3
\( {\widehat{D}}_y^{\mathrm{ROW}}=\left({\widehat{P}}_y^{\mathrm{ROW}}-{\widehat{U}}_y^{\mathrm{ROW}}\right){\varepsilon}_y^{\mathrm{ROW}} \) 4
Derived demand under locally constant return to scale condition
\( {\widehat{D}}_i={\displaystyle {\sum}_{j=1}^n{c}_j{\sigma}_{i j}\;{\widehat{P}}_j^M+{\widehat{S}}_y^{\mathrm{Dom}}} \) 5
Zero profit condition
\( {\widehat{P}}_y^M={\displaystyle {\sum}_{i=1}^n}{c}_i{\widehat{P}}_i^M \) 6
Input supply equations for two subsector
\( {\widehat{S}}_i={v}_i{\widehat{P}}_i^M \) 7
Forest and peatland conversion functions
\( {\widehat{D}}_{\mathrm{Fst}}=\gamma {\widehat{D}}_{\mathrm{Land}} \) 8
\( {\widehat{D}}_{\mathrm{Ptls}}=\mu {\widehat{D}}_{\mathrm{Land}} \) 9
Factor market clearing conditions
\( {\widehat{D}}_i={\widehat{S}}_i \) 10
Commodity market clearing conditions
\( {\widehat{D}}_y^M={\widehat{S}}_y \) 11