Commodity demand equations $${\widehat{D}}_y^M=\left(1-{\alpha}_y^{\mathrm{EU}}-{\alpha}_y^{\mathrm{ROW}}\right)\ {\widehat{D}}_{\mathrm{y}}^{\mathrm{Dom}}+{\alpha}_y^{\mathrm{EU}}{\widehat{D}}_y^{\mathrm{EU}}+{\alpha}_y^{\mathrm{ROW}}{\widehat{D}}_y^{\mathrm{ROW}}$$ 1 $${\widehat{D}}_y^D=\left({\widehat{P}}_y^M-{\widehat{U}}_y^{\mathrm{Dom}}\right){\varepsilon}_y^{\mathrm{Dom}}$$ 2 $${\widehat{D}}_y^{\mathrm{EU}} = \left({\widehat{P}}_y^{\mathrm{EU}}-{\widehat{U}}_y^{\mathrm{EU}}\right)\ {\varepsilon}_y^{\mathrm{EU}}$$ 3 $${\widehat{D}}_y^{\mathrm{ROW}}=\left({\widehat{P}}_y^{\mathrm{ROW}}-{\widehat{U}}_y^{\mathrm{ROW}}\right){\varepsilon}_y^{\mathrm{ROW}}$$ 4 Derived demand under locally constant return to scale condition $${\widehat{D}}_i={\displaystyle {\sum}_{j=1}^n{c}_j{\sigma}_{i j}\;{\widehat{P}}_j^M+{\widehat{S}}_y^{\mathrm{Dom}}}$$ 5 Zero profit condition $${\widehat{P}}_y^M={\displaystyle {\sum}_{i=1}^n}{c}_i{\widehat{P}}_i^M$$ 6 Input supply equations for two subsector $${\widehat{S}}_i={v}_i{\widehat{P}}_i^M$$ 7 Forest and peatland conversion functions $${\widehat{D}}_{\mathrm{Fst}}=\gamma {\widehat{D}}_{\mathrm{Land}}$$ 8 $${\widehat{D}}_{\mathrm{Ptls}}=\mu {\widehat{D}}_{\mathrm{Land}}$$ 9 Factor market clearing conditions $${\widehat{D}}_i={\widehat{S}}_i$$ 10 Commodity market clearing conditions $${\widehat{D}}_y^M={\widehat{S}}_y$$ 11