Skip to main content

Table 4 Regression with ROAt + 1 as the dependent variable

From: The impact of US sugar prices on the financial performance of US sugar-using firms

Variable Model 1 Model 2 Model 3
ln(SGA) − 0.003 − 0.005 0.006
(0.146) (0.147) (0.147)
t − 0.02 − 0.03 0.04
ln(ATO) 0.600*** 0.586*** 0.581***
(0.179) (0.177) (0.178)
t 3.35 3.31 3.26
ln(Size) 0.153*** 0.154*** 0.140***
(0.041) (0.039) (0.039)
t 3.76 3.98 3.62
ln(Growth) 0.010 0.007 0.008
(0.011) (0.010) (0.011)
t 0.87 0.71 0.76
ln(FRisk) − 0.056*** − 0.056*** − 0.058***
(0.016) (0.015) (0.016)
t − 3.59 − 3.64 − 3.75
ln(UWpra) 0.179**   
(0.068)   
t 2.62   
ln(UWpre)   0.259**  
  (0.099)  
t   2.61  
ln(UWprb)    0.199***
   (0.068)
t    2.92
Constant 0.861 0.793 0.926
(0.609) (0.574) (0.586)
t 1.41 1.38 1.58
Observations 953 953 953
# of firms 26 26 26
R-squared 0.297 0.295 0.284
F value 54.42 71.30 68.58
  1. Notes: Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. Reported R2 are “within” R2 statistics. Variable definitions are in Table 1. The data were winsorized at the 1% and 99% percentiles (Adams et al. 2019; Tukey 1962). The Akaike Information Criterion (AIC) and Bayesian Information (BIC) tests confirmed that winsorized data explain better the models