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Abstract 

The European Green Deal sets a target of at least 25% of the total EU agricultural 
land under organic farming by 2030. In the case of the Spanish olive sector, organic 
olive farming accounts for barely 10% of the national agricultural area dedicated 
to this crop. Within this context, this study compares the economic performance 
of Spanish conventional and organic olive farms in terms of productivity, profitability, 
viability, resilience, and independence. To do so, microdata provided by the Span‑
ish Farm Accountancy Data Network have been used, and matching methods have 
been applied to conduct an unbiased comparative analysis of matched conventional 
and organic farms. Results show statistically significant differences in productivity, 
with conventional olive groves being more productive. However, CAP subsidies are 
shown to be an effective instrument for promoting the conversion to organic farming 
in olive groves since they cancel out the differences in profitability between these two 
production systems. There is also evidence of the greater resilience of organic farms. 
These results could contribute to a more efficient design of instruments promoting 
the ecological transition of agriculture in line with the aforementioned policy objective.
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Introduction
Like many other economic sectors, agriculture generates significant environmental 
impacts. Agricultural production is a primary activity and therefore involves a highly 
intensive use of natural resources (soil, water, and energy) (Debertin 2012). This fact, 
together with the growing productive intensification of the agricultural sector (i.e., 
higher use of inputs to increase production), explains the significant negative pressures 
exerted on the planet’s biodiversity, soil, and water resources (e.g., Parris 2011; Wezel 
et al. 2011; Montanarella and Panagos 2021). The Food and Agriculture Organization of 
the United Nations (FAO) shows that, among other agricultural practices, the increased 
use of agrochemicals, excessive mechanization of land use, monocultures, and grazing 
intensity are responsible for the main negative environmental externalities from the 
agricultural sector worldwide (FAO 2022).

The European Union (EU) is striving to lead the way in the reduction of the envi-
ronmental impacts of agriculture and the development of more sustainable and resil-
ient food systems. For this purpose, the Farm to Fork Strategy (European Commission 
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2020b) and the Biodiversity Strategy (European Commission 2020a) have been approved 
as part of the European Green Deal (European Commission 2019). Both strategies call 
for a reduction in the use of agrochemicals and the promotion of agroecological prac-
tices, establishing a series of specific objectives for 2030: a) to reduce the overall use and 
risk of chemical pesticides and the use of more hazardous pesticides by 50%; b) to reduce 
the use of fertilizers by at least 20%, thereby reducing nutrient losses by at least 50%; 
c) to reduce overall EU sales of antimicrobials for livestock farming and aquaculture by 
50%; and d) to have 25% of agricultural land in the EU under organic farming. Accom-
plishing these objectives will require the active involvement of farmers, who must find 
innovative solutions to meet these new social and political demands and reduce environ-
mental impacts while maintaining the productivity and competitiveness of the European 
agricultural sector (Malorgio and Marangon 2021).

Regarding the last specific objective of the European Green Deal, according to the 
latest Eurostat data, only 9.1% of the EU’s utilized agricultural area (UAA) was under 
organic farming in 2020. Thus, there is a clear need to promote this agroecological pro-
duction system during the coming years in order to meet the target of 25% by 2030. 
Compared with conventional farming, organic farming makes more extensive use of 
resources; in particular, it makes significantly less use of pesticides and fertilizers, result-
ing in lower yields (de Ponti et al. 2012; Seufert et al. 2012). As a direct consequence, the 
profitability of organic farms is usually lower, which is the main factor explaining low 
conversion rates across the EU Member States (European Commission 2023). However, 
the profitability gap between conventional and organic farming has been shrinking in 
recent years for two main reasons.: On the one hand, the growing demand for certified 
organic food and the consequent price premium over conventional agricultural products 
(Tandon et al. 2021). On the other hand, the public financial support provided to organic 
farming, which in the case of the EU is implemented through subsidies allocated under 
the second pillar of the Common Agricultural Policy (CAP). Both of these reasons help 
explain the recent growth in the area dedicated to organic agriculture in the EU, as the 
last report of the International Federation of Organic Agriculture Movements (IFOAM) 
points out (Willer et al. 2023). In any case, it is reasonable to assume that the expansion 
of this type of agriculture in the future will depend on the evolution of its relative profit-
ability compared to conventional agriculture.

Considering the target of 25% of the agricultural area under organic agriculture set 
by the European Green Deal, it is only by bridging the profitability gap between the two 
production systems that the conversion from conventional to organic farming can be 
effectively promoted. Within this context, the main objective of this work is to compare 
the economic performance of organic and conventional farms, taking the Spanish olive 
sector as the case study. For this purpose, a comprehensive assessment approach is pro-
posed, allowing us to test for significant differences between conventional and organic 
olive farms regarding each economic performance dimension considered: productivity, 
profitability, viability, resilience, and independence. By so doing, we can highlight the 
factors on which political action should be focused to ensure that the organic transition 
process occurs at the rate required by the European Green Deal, while minimizing the 
negative effects arising from the loss of production.
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Previous comparative analyses of conventional and organic farms’ economic per-
formance have usually employed a non-randomized approach, directly comparing 
samples of conventional and organic farms (e.g., Demiryurek and Ceyhan 2008; Acs 
et  al. 2009; Artukoglu et  al. 2010; Beltrán-Esteve and Reig-Martínez 2014). Hence, 
these studies fail to consider variables that affect the farmers’ adoption of the organic 
production system (sample self-selection bias) and the farms’ economic performance 
(structural and productive differences). Consequently, the differences in farms’ per-
formance obtained in these analyses could be significantly biased, as it may be the 
case that instead of being caused by the production system implemented (i.e., conven-
tional vs. organic), they are actually explained by underlying factors such as farmers’ 
demographic variables (e.g., age and education) and farms’ structural characteristics 
(e.g., size and location) that lead to dissimilarities between the samples compared 
(Froehlich et al. 2018; Raimondo et al. 2021).

To address this limitation, several authors have employed matching methods when 
conducting farm-level comparative assessments (e.g., Mayen et  al. 2010; Uematsu 
and Mishra 2012; Gillespie and Nehring 2013; Froehlich et  al. 2018). These statisti-
cal techniques (further explained in the methodology section) attempt to balance the 
distribution of a set of control variables (i.e., covariates such as farmers’ age or farm 
size) between the samples compared, preventing potential biases due to differences 
in these variables between the samples (Stuart 2010; Ho et al. 2011). Thus, following 
the most recent literature, we applied a matching technique to compare two samples 
of olive farms (conventional and organic), employing a quasi-experimental approach 
that allowed us to estimate the unbiased impact of organic production (compared to 
conventional farming) on farms’ economic performance. To the best of the authors’ 
knowledge, only Raimondo et  al. (2021) have previously employed matching meth-
ods to compare the economic performance of organic and conventional olive farms. 
They used this approach to examine differences in technical efficiency in Italian olive 
farms, comparing a sample of 103 organic and 252 conventional olive farms, consid-
ering data from a single year (2015). The analysis showed that organic farming could 
increase technical efficiency in Italian olive farms by approximately 10%.

This paper aims to contribute to the existing literature in several ways. First, the 
analysis relies on a comprehensive conceptualization of farms’ economic perfor-
mance, drawing on an extensive literature review. This has allowed a thorough and 
innovative assessment of farms’ economic performance based on five key dimensions: 
productivity, profitability, viability, resilience, and independence. Second, we used 
matching methods for an unbiased comparative analysis of farms’ performance in 
three different years (2014, 2018, and 2020), thus accounting for the dynamic nature 
of the agricultural sector (i.e., volatility in economic performance) while testing the 
robustness of the results obtained for “average”, “good”, and “bad” agricultural sea-
sons from an economic point of view. And third, this is the first study to apply these 
methodological techniques to analyze the performance of farms specialized in per-
manent crops; specifically, olive (the study by Raimondo et al. 2021 focused solely on 
technical efficiency). All these contributions help expand the state of the art in the 
field of research on farm-level economic performance measurement and comparative 
assessment.
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The rest of the paper is organized as follows. Section 2 outlines the general situation 
of the olive sector in Spain and the main descriptive statistics of the representative sam-
ple of olive farms considered for the empirical analysis. Section 3 presents the indica-
tors selected to assess the economic performance of the farms and the matching method 
employed to replicate a randomized experiment for the comparison of organic and con-
ventional olive farms. The main results and discussion are addressed in Sect. 4. Finally, 
Sect. 5 contains the main conclusions drawn from the comparison of organic and con-
ventional olive farms to support a more efficient design of the policy instruments pro-
moting organic farming.

Case study and data source
Organic olive farming in Spain

In order to justify the relevance of the comparative analysis proposed, we must high-
light the importance of organic olive farming in Spain. In this respect, according to the 
latest Spanish agricultural census (INE, 2022), in 2020, there were 18,147 olive farms 
in Spain certified as organic (7.3% of the total Spanish olive farm population), cover-
ing an area of 220,902 hectares (10.4% of the national UAA devoted to olive groves). As 
shown by the data published by the Spanish Ministry of Agriculture, Fisheries, and Food 
(MAPA 2022), there has been a continuing rise in the number of organic farms and the 
organic farming area over the last two decades, and they have reached a historic high. 
Two factors can explain this trend. First, the organic production of extra virgin olive oil 
has become an increasingly attractive niche market for olive oil producers, responding 
to consumers’ willingness to pay higher prices for this type of oil (Cabrera et al. 2015; 
Del Giudice et al. 2015). Second, the increase in subsidies for organic farming from the 
second pillar of the CAP has improved organic farms’ revenues. Both factors have par-
tially offset the profitability gap faced by organic olive growers.

Data source

Any comparative analysis of the economic performance of conventional and organic 
farms must necessarily be based on microeconomic data at the farm level since only 
those data adequately reflect the heterogeneity of farms in terms of their ability to gener-
ate income and remunerate the factors of production used in both production systems. 
In this sense, the information provided by the Farm Accountancy Data Network (FADN) 
is the best option available in the EU. In our case, the analysis was based on the micro-
data of the representative sample of farms provided by the Spanish branch of the FADN 
(Red Contable Agraria Nacional, RECAN), using only those data obtained from farms 
coded as Type of Farming 37 (TF 37, olive farming) during the 2014–2020 period.

As Table 1 shows, the olive farm sample size in the RECAN has increased from 350 
to 435 over the period considered. On average, organic farms represent a third of the 
sample and about 30% of the sampled area. According to these figures, organic farms are 
overrepresented in the FADN sample. However, this is not a problem for our study since 
this overrepresentation ensures we have a minimum number of farms of each type to 
carry out the comparative analysis proposed.
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Economic performance of the Spanish olive sector

Before comparing conventional and organic olive farms, we conduct a brief analysis 
of the situation of the Spanish olive sector at the microeconomic level to help ensure 
the proper interpretation of the results derived from the study.

Table  2 shows some economic performance indicators of the average Spanish 
olive farm during the 2014–2020 period. As the data suggest, the annual volatility 
of the revenues, mainly due to variations in yields and world olive oil prices, leads 
to significant variations in the annual profitability indicators. This production and 
profitability volatility justifies the long period (2014–2020) used to analyze the eco-
nomic performance of these farms, as it allows an assessment of the changing factors 
affecting their performance.

As can be seen in Table 2, while Spanish olive farms’ subsidies and cost variables 
remain relatively stable during the period (with a CV of 5.2% and 5.8%, respectively), 
their sales revenue is highly volatile (CV = 9.3%) depending on crop yields, primar-
ily due to weather variability. This in turn leads to highly volatile olive farm income 
(i.e., indicators GFI, FNVA, and FNI, with a CV of 8.9%, 9.8%, and 12.5%, respec-
tively). Thus, considering the available data provided by the RECAN and their evolu-
tion over time, we focused on three specific years from the analyzed period: 2014, 
2018, and 2020, representing “bad”, “good”, and “average” seasons, respectively, in 
terms of economic performance (i.e., revenue and income). Therefore, by choosing 
these seasons for the empirical study, we dealt with the dynamic nature of the olive 
sector mentioned above; that is, we took into account the conditions that olive grow-
ers face and their capacity for adaptation (i.e., resilience) under alternative economic 
scenarios in this sector.

The RECAN does not publish aggregate data on the olive sector broken down 
into types of production system (e.g., conventional vs. organic). However, using 
microeconomic data at the farm level (i.e., considering all olive farms sampled by 
the RECAN) allowed us to assess the differences in economic performance between 
conventional and organic farms for each season.

Table 1 RECAN TF 37 annual sample distribution of conventional and organic farms

Source: Own elaboration based on RECAN microdata

Category Units 2014 2015 2016 2017 2018 2019 2020 Mean

Conventional farms Farms 231 246 222 227 244 286 290 249

%/sample 66% 66% 67% 66% 67% 67% 67% 67%

UAA 8,035 10,460 10,966 11,231 11,912 12,680 13,382 11,238

%/sample 65% 65% 69% 67% 74% 70% 70% 68%

Organic farms Farms 119 127 108 119 120 141 145 126

%/sample 34% 34% 33% 34% 33% 33% 33% 33%

UAA 4,319 5,716 4,942 5,564 4,144 5,533 5,699 5,131

%/sample 35% 35% 31% 33% 26% 30% 30% 32%

Total Farms 350 373 330 346 364 427 435 375

%/sample 100% 100% 100% 100% 100% 100% 100% 100%

UAA 12,354 16,176 15,908 16,795 16,056 18,213 19,081 16,369

%/sample 100% 100% 100% 100% 100% 100% 100% 100%
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Methodology
The methodology employed for the analysis can be split into four steps. First, we con-
ducted an extensive literature review to conceptualize farms’ economic performance 
and choose the appropriate indicators for its assessment. Second, we calculated the eco-
nomic performance indicators for every farm included in the two samples considered 
(i.e., conventional and organic). Third, we implemented a matching procedure to these 
samples to eliminate biases associated with the influence of underlying factors (non-ran-
domization). This step involved the selection of both the matching method to be imple-
mented and the set of covariates included in the analysis to achieve a balance between 
samples. Lastly, using the average treatment effect (ATE) estimator, we calculated the 
treatment effect (i.e., conversion to organic olive growing) on every economic perfor-
mance indicator chosen, identifying which ones are statistically significantly affected 
(positively or negatively) by the olive farms’ conversion to organic farming.

Economic performance indicators

The assessment of farms’ economic performance is a recurring topic in the literature 
since good economic performance (i.e., economic sustainability) is a sine qua non for 
the continuity of farms’ productive activity. Therefore, this is a topic of interest in both 
the political and academic arenas. Despite this, there is no commonly accepted concep-
tualization of farms’ economic performance. While there is a consensus about its mul-
tidimensionality, there is no unanimous agreement on a classification or typology of its 
dimensions. As a result, multiple approaches for the quantitative analysis of this concept 
have emerged, varying in the dimensions considered and the indicators used to measure 
them, as pointed out by Spicka et al. (2019) or Coppola et al. (2022).

In this study, we used a comprehensive approach for the assessment of farms’ eco-
nomic performance, including the dimensions of economic performance that the 
academic literature has deemed most relevant: productivity, profitability, viability, resil-
ience, and independence. Thus, a set of 32 economic performance indicators have been 
calculated for each farm and year using the microdata provided by the RECAN. Table 3 
shows the average values of these indicators for conventional (n = 246) and organic 
(n = 130) olive Spanish farms in 2020.1 Furthermore, Table 6 in Appendix 1 details how 
these indicators were calculated at the farm level. Below, we explain the selected eco-
nomic performance indicators.

Productivity can be defined as the relationship between a firm’s production and the 
resources used to obtain it. Despite the availability of more sophisticated methodologi-
cal options (e.g., Islam et  al. 2014; Rada and Fuglie 2019), the quantitative analysis of 
productivity in this study has been based on a classical perspective, considering the par-
tial productivity of the three basic production factors: land, labor, and capital, as pro-
posed by van Passel et al. (2007) and Onofri et al. (2019), among others. Therefore, the 
three productivity indicators have been calculated by dividing the value of the farms’ 

1 Although for 2020 the RECAN collected data for 290 conventional and 145 organic olive farms, some of the farms 
lack information on covariates such as age or education. The farms with incomplete information were dropped from the 
sample for the empirical analysis, leaving 246 conventional and 130 organic olive farms with full information.
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production in euros by the quantities of the three factors employed: land measured in 
hectares, labor in Annual Work Units (AWU), and capital (i.e., total assets) in euros (see 
Table 6 in Appendix 1).

Profitability can be characterized as the relationship between the profits generated 
by a firm and the investments or resources allocated to run the business. This is one 

Table 3 Average values of economic indicators for the organic and conventional olive farms for the 
year 2020 (“average” season)

*** , **, and * denote statistical significance at 0.1%, 1%, 5%, respectively
a  Dimensionless variable

Source: Own elaboration based on RECAN microdata

Indicator Organic farms 
(n = 130)

Conventional farms 
(n = 246)

Organic-conventional 
difference

Difference t statistic

Productivity

Land productivity (€/ha) 1391 2139 − 747 6.64***

Labor productivity (€/AWU) 34,030 41,959 − 7929 2.51*

Capital productivity (%) 14.3 17.5 − 3.14 2.49*

Profitability

1. Sales revenue (€/ha) 1391 2139 − 747 6.64***

2. CAP subsidies (€/ha) 507 400 107 − 2.77**

 CAP 1st pillar subsidies (€/ha) 272 377 − 105 3.35***

 CAP 2nd pillar subsidies (€/ha) 235 24 212 − 12.1***

A. Total revenue (€/ha) 1899 2539 − 640 5.24***

3. Intermediate consump. (€/ha) 519 781 − 262 5.75***

B. Gross margin (€/ha) 1380 1758 − 378 3.93***

4. Wages paid (€/ha) 263 340 − 76.6 2.50*

5. Rent paid (€/ha) 17.1 25.9 − 8.8 1.26

6. Depreciation (€/ha) 213 195 18.4 − 0.89

C. EBIT (€/ha) 886 1198 − 311 3.51***

D. EBT (€/ha) 886 1196 − 310 3.50***

E. Net income (€/ha) 866 1173 − 307 3.46***

ROA (%) 9.62 9.69 − 0.08 0.08

ROE (%) 9.44 9.51 − 0.08 0.08

Viability

Total opport. costs (TOC) (€/ha) 738 882 − 144 2.99**

Economic profit (€/ha) 128 290 − 162 1.69

Long− term econ.  viabilitya 1.39 1.69 − 0.29 1.81

Short− term econ.  viabilitya 11.31 8.44 2.90 − 0.80

Resilience

CV of net income (%) 42.4 56.5 − 14.1 2.35*

Net income resistance (%) − 47.4 − 106 58.1 − 1.17

Shannon div. index (SDI)a 0.028 0.097 − 0.069 2.87**

Specific costs adjus. flexibility (%) 141 41.2 99.8 − 8.12***

Labor input adjus. flexibility (%) 32.8 32.2 0.63 − 0.20

SDI adjus. flexibility (%) 0.95 0.73 0.21 − 0.47

Independence

Revenue dependency (%) 29.0 16.6 12.4 − 6.90***

Net income dependency (%) 8.97 − 23.9 32.8 − 0.48
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of the most extensively studied dimensions of economic performance since it ena-
bles the assessment of whether farms generate higher or lower profits than alternative 
businesses (Coppola et  al. 2020). The assessment of this dimension was based on a 
traditional approach (e.g., Uematsu and Mishra 2012; Gillespie and Nehring 2013), 
accounting for both income statement indicators and pure profitability indicators, 
as shown in Table 3. The former include revenue (sales and subsidies), variable costs 
and overhead costs, and the corresponding gross margin, earnings before interest and 
taxes (EBIT), earning before taxes (EBT), and net income; while the latter are return 
on assets (ROA) and return on equity (ROE). These sets of indicators not only allow 
us to detect differences in farms’ profitability (i.e., ROA and ROE) but also facilitate 
the interpretation of these potential differences (i.e., income statement indicators), 
enabling us to identify some possible causal effects.

The definition of farm viability has generated multiple academic debates, as evi-
denced by O’Donoghue et al. (2016) or Loughrey et al. (2022). However, many authors 
(e.g., Argilés 2001; Vrolijk et  al. 2010; Spicka et  al. 2019; Coppola et  al. 2022) con-
ceptualize this term as the farms’ capacity to generate sufficient income to cover all 
fixed and variable costs, as well as to remunerate the factors provided by the farmer. 
Following this approach, the opportunity costs of the factors provided by the olive 
grower were calculated and compared to the net income obtained by the farm.

For the calculation of the opportunity cost of land ( OCLand ) it has been assumed 
that the best alternative use of owned land is its rental (Coppola et al. 2020; Hlavsa 
et al. 2020). Thus, for the estimation of this opportunity cost, the owned area of each 
farm was multiplied by the annual rental fee paid for olive groves in the region where 
the farm is located. This land rental value was taken from official statistics published 
by the MAPA. Mathematically (FADN code of the variables used shown in brackets 
when applicable): 

To calculate the opportunity cost of the labor provided by the olive grower and his/her 
family ( OCLabor ), some authors use the average wage of the national agricultural sector 
(Ryan et al. 2016), or the average agricultural sector wage in the specific region in which 
the farm is located (Vrolijk et al. 2010). In our case, the opportunity cost of unpaid labor 
was estimated using the average annual wage paid for labor in the FADN sample of TF 
37 farms. Thus, it was calculated using the following expression:

Finally, concerning the opportunity cost of non-land assets owned by the olive grower 
( OCCapital ), there are two common options for its calculation: on the basis of an annual 
cost similar to the interest rate of 10-year national government bonds (Vrolijk et  al. 
2010), or on the basis of an annual cost similar to a generic return of 5% (Hlavsa et al. 
2020; Loughrey et al. 2022). Both options aim at replicating the cost of capital employed 
in low-risk investment alternatives. In the present study, we chose the first option since 
it better represents the dynamic of this opportunity cost by accounting for the evolution 
of the national economy as a whole. Therefore, the opportunity cost of non-land assets 
provided by the olive grower was calculated as follows:

(1)
OCLand = [ Total UAA (SE025)− Rented UAA ( SE030)]× Average annual rental fee in the region

(2)OCLabor = Unpaid labor input (SE015)× Average FADN TF 37 annual wage
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Once the different opportunity costs had been estimated, it was possible to calculate 
the economic profit of the farms by deducting the overall opportunity costs from the 
net income. In addition, two other indicators were calculated to assess farms’ viability 
(see Table 3). These indicators connect the net income generated on the farms with the 
opportunity cost of the factors provided by their owners, revealing the short-term (net 
income over opportunity cost of labor) and long-term viability (net income over total 
opportunity costs) of the farms (see Table 6 in Appendix 1).

The concept of farm resilience acknowledges the fact that farms’ income is affected by 
several risks (Komarek et al. 2020). Notable examples in the case of olive farms include 
productive risks affecting yields (e.g., weather-related events such as droughts, frost, and 
hail, or biological events such as pests), market risks affecting farm sales revenue and 
input prices, and institutional risks (e.g., changes in agricultural policies). These risks 
generate uncertainty and economic instability for farmers (Darnhofer 2014), which justi-
fies the increasing relevance of the analysis of agriculture systems’ resilience (see, among 
others, Sneessens et al. 2019; Harkness et al. 2021). Following Meuwissen et al. (2019), 
resilience can be conceptualized as a structural capacity of farms that indicates their abil-
ity to minimize the impacts from changes in the global environment (climate, markets, 
technologies, etc.). Therefore, the analysis of this concept involves three subdimensions 
that characterize the farm’s ability to cope with external pressures: robustness (stability 
of net income without making changes to the form of production), adaptability (capacity 
to slightly change the form of production–e.g., by changing the amount of inputs used) 
and transformability (capacity to radically change production–e.g., by changing the pro-
duction technology or system). Nevertheless, the strategic and structural nature of the 
concept of transformability precludes its quantitative analysis using the economic and 
accounting data provided by the RECAN. For this reason, in this study, the analysis of 
resilience has been based exclusively on indicators that seek to quantify the robustness 
(CV of net income, net income resistance, and Shannon diversity index–SDI) and adapt-
ability (flexibility of adjustment of specific costs, labor, and SDI) of olive farms. Table 6 in 
Appendix 1 shows the mathematical expression used to calculate each indicator selected 
for this dimension of economic performance.

The use of SDI for assessing farm resilience requires some explanation. This index 
quantifies farms’ land use diversity by calculating the share of the various different crops 
and other land uses in the total farm area. As stated by Zampieri et al. (2020) and van 
der Lee et al. (2022), crop diversification helps to minimize agricultural risks by stabiliz-
ing farms’ income, thus improving their robustness over time. This fact justifies the use 
of this indicator to assess farms’ resilience in our case study.

The two properties (i.e., robustness and adaptability) and the indicators used to quan-
tify farms’ resilience must be considered as structural characteristics of the farms under 
analysis. In fact, all the selected resilience indicators were calculated only once, using 
data (net income, specific costs, labor, etc.) from a balanced panel of 212 olive farms for 

(3)

OCCapital = [ Total fixed assets (SE441)

− Long and medium term loans (SE490)

− Land, permanent crops, and quotas (SE446)]

× Interest rate of 10-year national government bonds
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the whole 2014–2020 period (128 conventional and 84 organic olive farms). Therefore, 
the single value obtained for each indicator should be considered a constant value for 
farms over the seven years considered.

The last dimension of the economic performance analysis (independence) assesses 
farms’ degree of economic dependence on CAP subsidies, comparing the amount of 
payment received to both revenue and net income (see Table 6 in Appendix 1).

Table 3 shows the average values of the selected economic performance indicators for 
the samples of conventional and organic olive farms in 2020, which can be considered an 
“average” season. Likewise, the values for the 2014 and 2018 seasons, representing “bad” 
and “good” seasons, respectively, are included in Appendix 2 (see Table 7).

Matching and average treatment effects estimation

The main objective of this work is to quantify the effect of organic farming (i.e., the treat-
ment) on the farms’ economic performance (i.e., outcomes), which can be defined as 
follows (Rubin 1974):

where Y 0
i  is the value of the outcome obtained by non-treated farm i and Y 1

i  is the value 
of the outcome obtained by farm i when the treatment is applied. Therefore, in our case, 
the effect of organic farming on the economic performance of a farm i can be estimated 
by simply subtracting the performance indicator obtained by this farm under organic 
farming ( Y 1

i  ) from that obtained under conventional farming ( Y 0
i  ). Here arises the main 

problem of estimating causal effects in observational studies: each subject (i.e., farm), at 
a specific moment in time, can either receive the treatment or not, but cannot belong at 
the same time to both treatment and control groups (Rosenbaum 2010). In other words, 
for our analysis, an olive farm can only be considered conventional or organic. Thus, for 
the same farm, we can only observe either Y 0

i  or Y 1
i  , but not both outcomes. Therefore, 

to obtain the effect of organic farming on the economic performance of olive farming, 
we must estimate Y 1

i  for conventional farms (control group) and Y 0
i  for organic farms 

(treatment group); that is, we have to estimate the potential outcome that each subject 
would obtain if it were in the group to which it does not belong. Thus, the treatment 
effect on a subject i would be expressed as follows:

where T  classifies subjects in terms of treatment application ( T = 1 for organic farms 
and T = 0 for conventional farms).

However, building a model to obtain a correct estimation of the potential unob-
served outcomes requires that subjects belonging to the control and treatment groups 
(i.e., conventional and organic olive farms) are similar. Thus, we must assume the 
“strongly ignorable treatment assignment” condition, according to which the treat-
ment is assigned to the subjects randomly and independently of the results they 
obtain (Rosenbaum and Rubin 1983; Imbens 2004).

(4)τi = Y 1
i − Y

0

i

(5)τi =
Y 1
i − Y

0

i if Ti = 1

Y 1
i − Y

0

i if Ti = 0
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In randomized experiments, the abovementioned condition is automatically 
assumed since the assignment of subjects to the treatment group is completely ran-
dom (Rosenbaum 2010; Stuart 2010). However, this study is observational and non-
randomized. Thus, it cannot be assumed that the assignment of subjects to the 
treatment group is random, nor can it be assumed that differences between observed 
and estimated outcomes for subjects in both groups are due exclusively to the treat-
ment effect. This circumstance invalidates any comparative analysis of performance 
indicators based directly on their distributions in the analyzed samples, as is shown in 
the last two columns of Table 3 (and Table 7 included in Appendix 2) using Student’s 
t-test for the group comparison. As pointed out in the introduction section, the way 
to overcome this problem is the use of matching methods, aimed at balancing the dis-
tribution of several observed covariates (e.g., farm size, farm location) between con-
trol and treated groups. These techniques match similar subjects from the control and 
the treated groups in order to achieve balanced covariate distributions between both 
matched groups and by so doing replicate a randomized experiment for the covariates 
considered (Stuart 2010; Ho et al. 2011).

From the multiple matching methods available (Stuart 2010), full matching (Hansen 
2004) was selected for this research. This choice is justified for two reasons. First, 
this method uses all available information, assigning a “subclassification weight” 
(explained below) to each farm in the sample. Unlike the full matching technique, 
other matching methods—such as the exact, the nearest neighbor, or the optimal pair 
matching procedures—eliminate unmatched farms from the final sample (see Stuart 
2010; Thoemmes and Kim 2011). Hence, the application of other matching methods 
to our case study would result in a much smaller number of matched farms, mainly 
due to the significant heterogeneity between olive farms, the relatively small number 
of organic farms in the samples, and the high number of covariates introduced into 
the analysis. By employing these techniques (i.e., eliminating unmatched farms from 
the final sample), we would lose significant amounts of valuable information available 
for the analysis.2 Second, full matching, unlike the aforementioned conventional pair-
matching methods, allows for the estimation of the average treatment effect (ATE) 
(Austin and Stuart 2017), the treatment effect choice for this study, as we explain later 
in this section.

In addition, following Rosenbaum and Rubin (1983), the propensity score (probability 
of treatment assignment for each subject) has been used as a distance criterion between 
subjects for matching. The propensity score has been estimated by logistic regression 
using the covariates considered for the analysis as explanatory variables. These methods 
have been implemented using the R package called “MatchIt” (Ho et al. 2011). It should 
be noted here that the use of full matching and the process of assigning weights to the 
observations may introduce a potential bias (Rosenbaum 2010). However, this possibility 
was ruled out by checking the propensity score distribution similarity between treated 
and control groups in every matched sample. This check ensured that the matched sam-
ple was correctly balanced in terms of the probability of treatment assignment for each 
farm, confirming the elimination of non-randomization bias for the selected covariates.

2 In fact, this supposition was confirmed by the authors after testing the suitability of different matching methods for the 
analyzed samples.
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Matching methods are based on an appropriate selection of covariates. In our case, the 
covariates used in the matching process should guarantee, on the one hand, that organic 
farming adoption is completely random between compared farms (i.e., subjects) and, 
on the other hand, that matched conventional and organic farms have similar structural 
and productive characteristics. If these conditions are met, it can be assumed that the 
estimated differences between subjects for each economic performance indicator (i.e., 
outcomes) are due to the organic production system (i.e., treatment), and not to the 
influence of other underlying variables. The selection of covariates included in the analy-
sis was based on an extensive literature review focusing on the factors that affect organic 
farming adoption (e.g., Parra-López and Calatrava-Requena 2005; Läpple and van Rens-
burg 2011; Sauer and Morrison Paul 2013; Rodríguez Pleguezuelo et al. 2018) and farms’ 
structural characteristics that influence their economic performance (see, among others, 
Uematsu and Mishra 2012; Gillespie and Nehring 2013; Tey and Brindal 2015; Paul et al. 
2017; Froehlich et  al. 2018; Raimondo et  al. 2021). Consequently, a total of 18 covari-
ates were used to implement the selected matching method. These covariates included 
information about: a) olive growers’ socio-demographic characteristics, b) structural 
characteristics of the farms, c) farm resources, and d) characteristics of the region in 
which the farms are located. Information on the covariates included in the analysis, as 

Table 4 Average covariate values for organic and conventional farms in the RECAN for the year 
2020 (“average” season)

*** , **, and * denote statistical significance at 0.1%, 1%, 5%, respectively

Covariates Organic 
farms 
(n = 130)

Conventional 
farms 
(n = 246)

Organic-conventional 
difference

Mean Mean Difference t/χ2 statistic

Olive grower’s characteristics

Age (years) 60.0 61.7 − 1.74 1.37

Gender (1 = female, 0 = male) 0.27 0.14 0.13 9.05**

Education (1 = academic, 0 = experience) 0.26 0.25 0.01 0.08

Full‑time farmer (1 = yes, 0 = no) 0.27 0.48 − 0.21 15.6***

Farm characteristics

Ownership type (1 = family, 0 = corporate) 0.85 0.90 − 0.04 1.63

Location (1 = Andalusia, 0 = rest of Spain) 0.88 0.83 0.05 1.72

Location in areas of natural constraints (1 = yes, 
0 = no)

0.85 0.67 0.18 13.9***

Location altitude < 300m (1 = yes, 0 = no) 0.21 0.41 − 0.20 15.0***

Location altitude 300‑600m (1 = yes, 0 = no) 0.70 0.32 0.38 50.4***

Product certification (1 = yes, 0 = no) 0.05 0.10 − 0.05 3.06

Utilized Agricultural Area, UAA (ha) 41.7 46.3 − 4.56 0.53

Irrigation area (%/UAA) 13.1 40.9 − 27.8 6.93***

Farm resources

Land value (€/ha) 9337 12,443 − 3105 2.97**

Family labor input (%/total labor) 55.8 59.5 − 3.66 1.15

Production intensity (€/ha) 482 641 − 159 4.77***

Characteristics of the region

GDP per capita (€) 18,293 18,622 − 329 1.31

Total organic area (%/regional UAA) 21.7 21.0 0.68 − 1.21

Olive organic area (%/regional olive UAA) 8.94 9.65 − 0.72 0.64
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well as their averages in the compared samples for 2020 (“average” season), can be found 
in Table 4. The same information for 2014 (“bad” season) and 2018 (“good” season) years 
are included in Appendix 3 (see Table 8 and Table 9).

Once the probability of the treatment assignment has been estimated for each subject 
according to its covariates, full matching assigns each subject to a subclass according to 
its propensity score. For this purpose, an optimal number of subclasses is automatically 
created, such that the sum of the absolute distance between subjects within each sub-
class (i.e., the difference in their propensity scores) is minimal (Hansen 2004). Therefore, 
all subjects are assigned to a subclass and, on this basis, are assigned a “subclassification 
weight”. Thus, after matching both samples under the condition of “ignorability in treat-
ment assignment”, a weighted general linear model using the subclassification weights 
was proposed. The general equation of the model can be expressed as shown:

where Y  represents the outcomes to be estimated (economic performance variable), β0 
the intercept term of the linear model, and βk the parameters of each of the explanatory 
variables, including the treatment assignment variable ( T  ) and all the covariates ( COVj ). 
To estimate the effect of the treatment on several outcomes ( Y  ), as in this case, it is nec-
essary to estimate the unobserved outcomes of each of the subjects by proposing a spe-
cific model for each Y  (Ho et al. 2011).

There are three options for calculating the treatment effect on a sample: a) calculating 
the average treatment effect on the subjects of both the control and treatment groups 
(Average Treatment Effect, ATE), b) on the subjects of the control group (Average Treat-
ment Effect for the non-treated Controls, ATC), and c) on the subjects of the treated 
group (Average Treatment Effect for the Treated, ATT) (for more detailed information 
see, among others, Imbens 2004; Imai et al. 2008). Given the main objective of this study, 
ATE was chosen.

Having estimated the unobserved results of all subjects for the corresponding Y  , 
the average treatment effect on the whole matched sample (ATE) for each Y  can be 
expressed as follows:

Thus, the ATE was calculated as the sum of the individual treatment effect on the out-
comes ( Y  ) for all subjects i in the matched sample ( τi ), divided by the total number of 
subjects belonging to the matched sample ( N).

Results and discussion
“Average” season (2020 year)

The main results obtained for each of the dimensions of economic performance analyzed 
in the 2020 season are presented in Table 5, allowing a comparison of the two produc-
tion systems. These results suggest that the implementation of the organic production 

(8)Y = β0 + β1T + β2COV1 + β3COV2 + β4COV3 · · · + ε

(9)ATE =
1

N
×

∑
i
(τi|T )
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Table 5 ATE estimates of organic production on the economic performance indicators for the years 
2020 (“average” season), 2014 (“bad” season), and 2018 (“good” season)

*** , **, and * denote statistical significance at 0.1%, 1%, 5%, respectively
a  Year 2020: Matching 246 conventional farms with 130 organic farms
b  Year 2014: Matching 203 conventional farms with 113 organic farms
c  Year 2018: Matching 210 conventional farms with 113 organic farms
d  Dimensionless variable
e  Panel sample: Matching 128 conventional farms with 84 organic farms

Indicators 2020a 2014b 2018c

ATE p-value ATE p-value ATE p-value

Productivity

Land productivity (€/ha) − 228 0.008** − 158 0.197 − 199 0.028*

Labor productivity (€/AWU) − 5259 0.102 3449 0.201 − 8632 0.044*

Capital productivity (%) − 0.76 0.475 − 4.90 0.005** − 2.52 0.041*

Profitability

1. Sales revenue (€/ha) − 228 0.008** − 158 0.197 − 199 0.028*

2. CAP subsidies (€/ha) 82.9 0.018* 12.0 0.763 170.5 0.000**

 CAP 1st pillar subsidies (€/ha) − 66.0 0.024* − 141 0.000*** − 73.2 0.009**

 CAP 2nd pillar subsidies (€/ha) 145 0.000*** 118 0.000*** 232 0.000***

A. Total revenue (€/ha) − 114 0.198 − 115 0.374 − 48.3 0.633

3. Intermediate consumption (€/ha) 33.4 0.227 − 41.9 0.084 − 22.1 0.383

B. Gross margin (€/ha) − 156 0.056 − 120 0.355 7.07 0.940

4. Wages paid (€/ha) − 54.3 0.022* − 20.8 0.262 − 17.5 0.334

5. Rent paid (€/ha) 15.8 0.043* − 22.0 0.003** − 9.81 0.226

6. Depreciation (€/ha) − 13.7 0.396 − 10.4 0.455 − 14.9 0.364

C. EBIT (€/ha) − 99.4 0.240 − 12.1 0.926 58.6 0.516

D. EBT (€/ha) − 99.3 0.240 − 5.59 0.966 60.1 0.504

E. Net income (€/ha) − 104 0.218 8.87 0.946 56.9 0.528

ROA (%) 0.39 0.646 − 2.43 0.064 1.39 0.138

ROE (%) 0.32 0.716 − 1.30 0.326 1.33 0.157

Viability

Total Opportunity Costs (TOC) (€/ha) − 11.8 0.714 − 154 0.000*** − 5.42 0.844

Economic profit (€/ha) − 120 0.175 112 0.405 30.5 0.744

Long‑term econ.  viabilityd − 0.304 0.048* − 0.077 0.733 − 0.086 0.594

Short‑term econ.  viabilityd 2.10 0.367 − 0.71 0.283 − 3.37 0.128

Resiliencee

CV of net income (%) − 10.9 0.072

Net income resistance (%) 24.9 0.607

Shannon diversity index (SDI)  meand 0.025 0.315

Specific costs adjustment flexibility (%) 63.3 0.000***

Labor input adjustment flexibility (%) − 1.89 0.450

SDI adjustment flexibility (%) 0.99 0.016*

Independence

Revenue dependency (%) 9.00 0.000*** 3.52 0.053 8.22 0.000***

Net income dependency (%) 57.9 0.544 348 0.179 17.7 0.090
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system in olive groves leads to a decrease in productivity, mainly due to lower produc-
tion intensity, as pointed out by several studies (see, among others, Tzouvelekas et  al. 
2001; Parra-López and Calatrava-Requena 2005; Guzmán et al. 2011). Nevertheless, the 
lower sales revenue of organic olive farms (−€228/ha) is largely offset by higher CAP 
subsidies (+ €82.9/ha), as reported by Sgroi et al. (2015) and Iofrida et al. (2020). In any 
case, it is worth differentiating between subsidies coming from the first pillar of the CAP 
(direct payments supporting farm income) and subsidies from the second pillar (sub-
sidies promoting agri-environmental schemes) (see Erjavec and Erjavec 2021). In this 
sense, it can be seen that payments from the first pillar of the CAP are lower for organic 
olive farms (−€66/ha), while subsidies from the second pillar are more favorable for 
organic olive farms: on average, €145/ha higher than for conventional olive farms.

These differences in CAP subsidies can be explained by considering how subsidies 
from these two pillars are granted to farmers. In Spain, direct payments from the first 
pillar, mainly the basic payment scheme (BPS), are based on individual payment entitle-
ments, with highly heterogeneous values among farmers. The values of these payment 
entitlements depend on the coupled subsidies received by each farmer during the refer-
ence period (2000–2002), when the BPS was implemented for the first time, at which 
time they were ultimately linked to farms’ productivity. This explains why olive farms 
that are potentially more productive, usually operating under conventional production, 
receive higher subsidies from the first pillar of the CAP. On the contrary, olive farms 
operating under organic production are generally located in less productive regions (e.g., 
mountainous areas or areas facing other natural constraints), where direct payments 
from the first pillar are much lower. Regarding the subsidies from the second pillar, it 
is obvious that only organic farms qualify for the agri-environmental scheme promot-
ing organic farming. This explains why organic farms receive higher greening payments, 
reflecting the many benefits that this type of farming offers for the environment.

The overall greater economic support for organic farming from the CAP offsets pro-
duction losses associated with this productive system, which clarifies why the analysis 
shows no significant differences between the total revenues obtained by conventional 
and organic olive growing.

Multiple studies evidence significant differences in profitability between conventional 
and organic olive farms, with most of them suggesting that the latter are more profitable 
(e.g., Sgroi et al. 2015; Berg et al. 2018; Iofrida et al. 2020).3 Despite that, the results of 
this study do not support this claim, finding no treatment effect on general profitability 
indicators (EBIT, EBT, net income, ROA, or ROE) at a 5% statistical significance level. 
This result, however, is aligned with those obtained by other authors such as Uematsu 
and Mishra (2012), who compared the economic performance of conventional and 
organic crop farms in the United States.

Regarding the viability indicators, statistically significant differences are found in only 
one of them: long-term economic viability. The result for this indicator (-0.304) suggests 
that conventional farms are more viable, since they have a better capacity to compen-
sate for all the opportunity costs incurred by the olive grower. However, no statistically 

3 In other agricultural sectors it has also been reported that the profitability of conventional farming is significantly dif-
ferent from that obtained under organic farming (e.g., Gillespie and Nehring 2013; Froehlich et al. 2018).
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significant differences are found in indicators of total opportunity costs, economic ben-
efit, and short-term viability. To the best of the authors’ knowledge, no previous studies 
have analyzed differences in viability indicators between conventional and organic farm-
ing, underscoring the novelty of these results. The only example we can find is the study 
of Gillespie and Nehring (2013), who calculated the opportunity costs of unpaid labor in 
beef farms in the USA, without finding significant differences between conventional and 
organic production systems.

Regarding the resilience indicators, organic olive farms are shown to have greater 
flexibility in adjusting specific costs (+ 63.3%) and the SDI (+ 0.99%), suggesting that 
this production system is more capable of adapting to possible production and market 
shocks and are therefore more resilient than conventional olive farms. A similar conclu-
sion was reached by Cabrera et al. (2013) in their comparison of alternative production 
systems in Andalusian olive farms.

As explained above, the results for the resilience indicators should be the same regard-
less of the season in question, since they are actually structural indicators (i.e., they have 
been calculated considering the whole period analyzed). Thus, the results for these indi-
cators are only discussed for the average season, as explained above.

Focusing on the independence indicators, it can be observed that organic farms are 
more dependent on CAP subsidies (+ 9.0%). Indeed, as noted above, this circumstance 
is explained by the subsidies granted under the second pillar of the CAP, which are much 
higher in organic olive farms than in conventional olive farms.

“Bad” season (2014 year)

Table 5 also shows the comparison results when considering a “bad” season, based on 
2014 data. For this season, there are no differences between the two production systems 
regarding land productivity. This finding contrasts with the results obtained for the aver-
age season, but is similar to the results of Volakakis et al. (2022) for the Greek olive sec-
tor. Again, differing from the results for the average season, capital productivity in the 
bad season is slightly lower for the organic olive farms (-4.9%).

Regarding the profitability indicators, there are no significant differences in sales rev-
enue and current subsidies received by the two types of farms. In any case, similar to the 
average season results, organic farms receive lower payments from the first pillar of the 
CAP (−€141/ha) than conventional farms do, but more support from the second pillar 
of the CAP (+ €118/ha). The results also indicate that, as in the average season, there are 
no significant differences in profitability between the two types of farms. Thus, in a bad 
season, the effect of the treatment on the general profitability indicators (EBIT, EBT, net 
income, ROA, or ROE) is statistically non-significant at a 5% level.

In the case of the viability indicators, no significant difference can be found between 
the two production systems. Differences are only observed in opportunity costs, which 
are lower (−€154/ha) for organic olive farms. Finally, contrary to the 2020 season, the 
results for 2014 do not suggest differences in the independence of the two types of olive 
farms.
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“Good” season (2018 year)

With regard to the good season analyzed (the 2018 season in Table 5), results also show 
a lower land productivity of organic olive farms compared to conventional ones (−€199/
ha), and the same is true of labor productivity and capital productivity (−€8632/AWU 
and − 2.52%, respectively). This is explained by the lower production intensity of organic 
farming, the productive limitations of which are particularly evident in cases of high 
yields and high olive oil prices.

Regarding profitability indicators, the conclusions that can be drawn are very simi-
lar to those for the 2020 season. Thus, the lower sales revenue from organic olive farm-
ing (−€199/ha) is offset by CAP subsidies (+ €171/ha), with the organic-conventional 
comparison revealing a negative difference for the payment received from the first pil-
lar payments (−€73.2/ha) and an extremely positive difference for the subsidies granted 
under the second pillar (+ €232/ha). In this sense, there is no difference in total revenue 
between conventional and organic olive farms, a fact that supports the effectiveness of 
the CAP subsidies in promoting organic farming. Moreover, similar to the other seasons 
analyzed, no significant differences in profitability can be found between conventional 
and organic olive farms, since the effect of the treatment is not significant at a 5% level 
on any of the general profitability indicators (EBIT, EBT, net income, ROA, or ROE).

Regarding the viability indicators, there is no significant ATE, suggesting that there 
are no differences between the viability of organic and conventional olive farms in good 
seasons.

Finally, regarding the independence indicators, results are similar to those obtained for 
the average season, since organic olive farms are shown to be more dependent than con-
ventional ones (+ 8.22%) due to the support received from the second pillar of the CAP.

Concluding remarks
The results of the empirical analysis have important implications for the efficient design 
of agricultural policy instruments aimed at promoting the expansion of organic olive 
farming. First, it is worth pointing out that the subsidies granted under the second pillar 
of the CAP were found to be the main factors explaining the progressive increase in the 
agricultural land under organic farming in recent years, since these subsidies offset the 
lower sales revenue (i.e., lower yields) obtained by organic olive farming. This leads us 
to conclude that subsidies for organic farming are generally an effective tool for encour-
aging an increase in the area devoted to organic agriculture. However, this conclusion 
needs to be supported by some additional comments.

CAP support (i.e., subsidies from the second pillar) has been a key factor in promot-
ing the adoption of organic farming, especially in those olive groves with low levels of 
productivity under a conventional production system (e.g., olive groves in mountain-
ous areas). Indeed, with a relatively small amount of agri-environmental subsidies, it has 
been possible to compensate for the drop in productivity resulting from the conversion 
to organic farming. This explains why organic olive farming has already been adopted in 
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most areas in Spain where the olive groves are relatively less productive (average annual 
yield lower than 2000 kg of olives/ha).

Moreover, some insights into the different seasonal effects are also worth noting. In 
this sense, results show that the gap between organic and conventional olive farm pro-
ductivity narrows in “bad” seasons but widens in “good” years. However, differences in 
terms of profitability or viability remain basically the same regardless of the scenario 
(i.e., “bad”, “good”, and “average” season). Thus, the main conclusions derived from 
annual results can be extended to the whole analyzed period. These findings confirm 
the general effectiveness of CAP agri-environmental subsidies in promoting the organic 
olive production system, as they adequately offset the profitability gap derived from this 
ecological transition.

Regarding sustainability, although this paper has focused on farms’ economic per-
formance, we cannot overlook the role of organic farming as a production system 
that generates significant positive social and environmental impacts: the enhance-
ment of biodiversity and the quality of natural resources (soil and water), the reduc-
tion of non-renewable energy use and greenhouse gas emissions, or the support 
for rural development, among others (European Commission 2023). These benefits 
explain the reasoning behind the European Green Deal target of raising the agricul-
tural area managed under organic production regimes to 25% by 2030. In this sense, 
the results showing the greater resilience of organic olive farms compared to conven-
tional ones help justify public action to promote this production system. In sum, it 
has been demonstrated that fostering this production system in the olive sector could 
enhance farms’ resilience while contributing to a more environmentally sustainable 
agriculture.

Nonetheless, the increase in the organic olive farming area required to meet the tar-
get set by the European Green Deal calls for more CAP support for organic farming. 
Higher subsidies can facilitate the gradual adoption of this production system in areas 
where conventional olive farming is more productive. However, if the current crite-
rion for allocating subsidies to organic farming is maintained—that is, a payment per 
hectare uniformly granted to all farms signing this agri-environmental contract—the 
overall public expenditure needed for this policy would be considerably higher. This 
increase in the budget needed would contrast with the overcompensation received by 
those olive growers with less productive groves that have already converted to organic 
farming. For both these reasons, it is proposed that the subsidies should be allo-
cated on the basis of the productivity losses experienced by the farms when adopting 
organic farming (i.e., the higher the current productivity, the greater the production 
losses after conversion, and the higher the subsidies to be received; and vice-versa). 
In this way, the increase in the organic olive farming area would be promoted more 
efficiently, compensating for the actual economic losses derived from the conversion 
to organic farming (i.e., lower production of private goods in favor of a higher provi-
sion of public goods), and preventing the generation of unjustified economic rents for 
olive growers with less productive olive farms.
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In any case, as stated by Parra-López and Calatrava-Requena (2005) and Rodríguez 
Pleguezuelo et al. (2018), among others, the conversion to organic farming in the Span-
ish olive sector should also be promoted through the implementation of other comple-
mentary policies in addition to greater support from the second pillar of the CAP. Such 
policies could be aimed at (a) the development of training programs to raise olive grow-
ers’ awareness of environmental conservation; (b) the incorporation of young farmers 
into the olive sector, contributing to the necessary generational change; and (c) encour-
aging the digitalization of agriculture, as a tool that would facilitate the conversion to 
organic olive farming and other eco-compatible production systems.

Moreover, relevant theoretical implications can be drawn from this study related to 
the application of matching methods when comparing two samples of farms. In this 
sense, the correct application of these techniques allows the bias caused by the influ-
ence of underlying variables (e.g., structural differences between conventional and 
organic farms) to be effectively minimized. Additionally, it has been evidenced that 
analyzing a long period (seven years in our case study) helps ensure a comprehensive 
assessment of farms’ performance under different possible scenarios (e.g., weather 
conditions affecting crop yields) and enables the evaluation of resilience as a struc-
tural capacity of farms over time.

The main limitations of this study are related to the source of information used in the 
analysis. The RECAN does not collect certain data that would be valuable for the anal-
ysis, relating to outcomes such as olive yields (kg/ha) and covariates such as planting 
density (number of olive trees per hectare) or average farmland slope (%). In fact, if this 
information were available, a more accurate assessment of farms’ economic performance 
could be performed. In any case, these data constraints do not invalidate the soundness 
and reliability of the results obtained.

Finally, stemming from this work, some proposals for future research are worth men-
tioning. First, extending the analysis to other dimensions of farms’ sustainability (i.e., 
farms’ environmental and social performance) would be helpful for a comprehensive 
assessment of farms’ performance under different production systems. Moreover, this 
would allow an assessment of trade-offs between these farms’ performance dimensions, 
which could lead to valuable insights to support sounder, more balanced policy instru-
ments aiming at the ecological transition of the agricultural sector. Second, the analy-
sis proposed could also be implemented to compare conventional farming with other 
alternative agricultural production systems that are growing in popularity, such as bio-
dynamic production, a topic that has not been analyzed before. This is a knowledge gap 
that should be bridged to justify any public support for these environmentally-friendly 
production systems.
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Appendix 1
See Table 6.

Table 6 Calculation formulas for each farm’s economic performance indicator used in the analysis

a  Resilience indicators were calculated for a balanced panel of 212 olive farms for the period 2014–2020, including 128 
conventional and 84 organic olive farms. The subscript t  in these indicators refers to each of the years included in the 
analyzed period

Indicator (units) Formula RECAN data source codes

Productivity

Land productivity (€/ha) Total output / UAA SE131 / SE025

Labor productivity (€/AWU) Total output / Total labor SE131 / SE010

Capital productivity (%) Total output / Total assets SE131 / SE436

Profitability

1. Sales revenue (€/ha) – SE131

2. CAP subsidies (€/ha) – SE605

 CAP 1st pillar subsidies (€/ha) – SE610 + SE615 + SE630

 CAP 2nd pillar subsidies (€/ha) – SE624 + SE689

A. Total revenue (€/ha) 1+ 2 1 + 2

3. Intermediate consump. (€/ha) – SE275

B. Gross margin (€/ha) A− 3 A− SE275

4. Wages paid (€/ha) – SE370

5. Rent paid (€/ha) – SE375

6. Depreciation (€/ha) – SE360

C. EBIT (€/ha) B− 4− 5− 6 B− SE370−SE375−SE360

D. EBT (€/ha) C − Interest paid (€/ha) C−SE380

E. Net income (€//ha) D − Taxes paid (€//ha) D−SE390

ROA (%) EBIT / Total assets EBIT / SE436

ROE (%) Net income / Equity Net income / SE501

Viability

Total opport. costs (€//ha) OCLand + OCLabor + OCCapital –

Economic profit (€//ha) Net income− TOC –

Long‑term econ.  viabilitya Net income / TOC –

Short‑term econ.  viabilitya Net income / OCLabor –

Resilience

CV of net income (%) σNet incomet

Net incomet
–

Net income resistance (%) Min
[
Net incomet−Net incomet

Net incomet
∀t

]
–

Shannon div. index (SDI)a
−
∑

ipi,t × ln(pi,t) pi based on SE035, SE041, SE046, 
SE050, SE055, SE060, SE065, SE071, 
SE075

Specific costs adjus. flexibility (%)
∣∣∣ Specif. costst−Specif. costst−1

Specif. costst−1

∣∣∣
∣∣∣ SE281t−SE281t−1

SE281t−1

∣∣∣

Labor input adjus. flexibility (%)
∣∣∣ Total labort−Total labort−1

Total labort−1

∣∣∣
∣∣∣ SE010t−SE010t−1

SE010t−1

∣∣∣

SDI adjus. flexibility (%) |SDIt − SDIt−1| –

Independence

Revenue dependency (%) Total CAP subsidies / Total revenue SE605 / (SE131 + SE605)

Net income dependency (%) Total CAP subsidies / Net income SE605 / Net income
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Appendix 2
See Table 7.

Table 7 Average values of economic performance indicators for organic and conventional farms 
sampled by the RECAN for the years 2014 (“bad” season) and 2018 (“good” season)

Indicator 2014 2018

Organic 
farms 
(n = 113)

Conven. 
farms 
(n = 203)

Organic-
conventional 
difference

Organic 
farms 
(n = 113)

Conven. 
farms 
(n = 210)

Organic-
conventional 
difference

Mean Mean Diff t statistic Mean Mean Diff t statistic

Productivity

Land produc‑
tivity (€/ha)

1112 1734 − 623 5.03*** 1707 2299 ‑592 5.30***

Labor pro‑
ductivity (€/
AWU)

24,072 30,153 −6080 2.31* 34,903 50,397 ‑15,494 3.93***

Capital pro‑
ductivity (%)

13.2 18.8 −5.66 3.56*** 18.7 21.9 − 3.23 2.19*

Profitability

1. Sales rev‑
enue (€/ha)

1112 1734 − 623 5.03*** 1707 2299 − 592 5.30***

2. CAP subsi‑
dies (€/ha)

523 545 − 21.8 0.45 607 431 176 − 4.02***

 CAP 1st 
pillar 
subsidies 
(€/ha)

309 516 − 207 5.36*** 234 419 − 185 6.33***

 CAP 2nd 
pillar 
subsidies 
(€/ha)

214 29.3 185 − 7.00*** 373 11.9 361 − 11.9***

A. Total rev‑
enue (€/ha)

1635 2279 − 645 4.66*** 2313 2730 − 417 3.31**

3. Intermed. 
consump. 
(€/ha)

505 708 − 203 4.96*** 444 738 − 294 7.21***

B. Gross mar‑
gin (€/ha)

1130 1571 − 442 3.60*** 1869 1992 − 122 1.14

4. Wages paid 
(€/ha)

224 319 − 95.5 3.67*** 262 363 − 101 3.69***

5. Rent paid 
(€/ha)

2.42 37.4 − 35.0 5.19*** 13.9 39.7 − 25.7 3.54***

6. Deprecia‑
tion (€/ha)

210 221 − 11.1 0.60 219 187 32.3 − 1.61

C. EBIT (€/ha) 694 994 − 300 2.66** 1374 1402 − 27.9 0.29

D. EBT (€/ha) 694 990 − 297 2.63** 1374 1400 − 26.2 0.27

E. Net income 
(€/ha)

673 968 − 295 2.62** 1356 1380 − 23.9 0.25

ROA (%) 8.52 10.8 − 2.33 2.09* 15.4 12.9 2.55 − 2.24*

ROE (%) 8.27 10.8 − 2.57 2.26* 15.2 12.8 2.38 − 2.08*

Viability

Total Oppor‑
tunity Costs 
(TOC) (€/ha)

860 911 − 51.2 0.91 820 780 39.7 − 0.97

Economic 
profit (€/ha)

− 187 57.2 − 244 1.97* 535 599 − 63.6 0.67

Long− term 
econ. 
 viabilitya

0.90 1.40 − 0.50 2.61** 1.83 2.11 − 0.28 1.65
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Appendix 3
See Tables 8 and 9.

*** , **, and * denote statistical significance at 0.1%, 1%, 5%, respectively
a  Dimensionless variable

Table 7 (continued)

Indicator 2014 2018

Organic 
farms 
(n = 113)

Conven. 
farms 
(n = 203)

Organic-
conventional 
difference

Organic 
farms 
(n = 113)

Conven. 
farms 
(n = 210)

Organic-
conventional 
difference

Mean Mean Diff t statistic Mean Mean Diff t statistic

Short− term 
econ. 
 viabilitya

2.02 3.36 − 1.34 2.28* 5.19 10.3 − 5.12 2.17*

Independence

Revenue 
dependency 
(%)

32.5 26.2 6.31 − 3.27** 26.5 16.1 10.4 − 6.69***

Net income 
dependency 
(%)

429 − 140 569 − 1.63** 47.1 27.8 19.3 − 2.10*

Table 8 Average values of selected covariates for the organic and conventional farms sampled by 
the RECAN for the year 2014 (“bad” season)

*** , **, and * denote statistical significance at 0.1%, 1%, 5%, respectively

Covariates Organic 
farms 
(n = 113)

Conventional 
farms 
(n = 203)

Organic-conventional difference

Mean Mean Difference t/χ2 statistic

Olive grower’s characteristics

Age (years) 54.8 59.4 − 4.59 3.98***

Gender (1 = female, 0 = male) 0.30 0.11 0.19 18.5**

Education (1 = academic, 0 = experience) 0.13 0.06 0.07 5.04*

Full‑time farmer (1 = yes, 0 = no) 0.53 0.62 − 0.09 2.41

Farm characteristics

Ownership type (1 = family, 0 = corporate) 0.87 0.93 − 0.06 3.54

Location (1 = Andalusia, 0 = rest of Spain) 0.94 0.75 0.18 16.7***

Location in areas of natural constraints (1 = yes, 0 = no) 0.95 0.66 0.29 33.0***

Location altitude < 300m (1 = yes, 0 = no) 0.08 0.28 − 0.20 17.8***

Location altitude 300‑600m (1 = yes, 0 = no) 0.85 0.40 0.45 59.8***

Product certification (1 = yes, 0 = no) 0.03 0.16 − 0.14 13.3***

Utilized Agricultural Area, UAA (ha) 35.1 34.3 0.83 − 0.20

Irrigation area (%/UAA) 10.6 33.3 − 22.7 5.68***

Farm resources

Land value (€/ha) 6371 11,737 − 5367 5.76***

Family labor input (%/total labor) 64.8 63.4 1.40 − 0.59

Production intensity (€/ha) 495 580 − 84.8 2.59*

Characteristics of the region

GDP per capita (€) 17,978 19,209 − 1231 4.44***

Total organic area (%/regional UAA) 22.4 20.5 1.89 − 3.46***

Olive organic area (%/regional olive UAA) 7.45 10.6 − 3.17 2.98**
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Abbreviations
ATC   Average Treatment Effect for the non‑treated Controls
ATE  Average Treatment Effect
ATT   Average Treatment Effect for the Treated
AWU   Annual Work Unit
BPS  Basic Payment Scheme
CAP  Common Agricultural Policy
CV  Coefficient of Variation
EBIT  Earnings Before Interest and Taxes
EBT  Earnings Before Taxes
EU  European Union
FADN  Farm Accountancy Data Network
FAO  Food and Agriculture Organization of the United Nations
FNI  Farm Net Income
FNVA  Farm Net Value Added
GDP  Gross Domestic Product
GFI  Gross Farm Income
IFOAM  International Federation of Organic Agriculture Movements
INE  Instituto Nacional de Estadística (National Statistics Institute)
MAPA  Ministerio de Agricultura, Pesca y Alimentación (Ministry of Agriculture, Fisheries, and Food)
OC  Opportunity Costs
RECAN  Red Contable Agraria Nacional (Spanish Farm Accountancy Data Network)
ROA  Return On Assets
ROE  Return On Equity
SDI  Shannon Diversity Index
TF  Type of Farming
TOC  Total Opportunity Costs
UAA   Utilized Agricultural Area

Table 9 Average values of selected covariates for the organic and conventional farms sampled by 
the RECAN for the year 2018 (“good” season)

*** , **, and * denote statistical significance at 0.1%, 1%, 5%, respectively

Covariates Organic 
farms 
(n = 113)

Conventional 
farms 
(n = 210)

Organic-conventional 
difference

Mean Mean Difference t/χ2 statistic

Olive grower’s characteristics

Age (years) 57.9 61.7 − 3.81 2.90**

Gender (1 = female, 0 = male) 0.32 0.15 0.17 13.1***

Education (1 = academic, 0 = experience) 0.23 0.18 0.05 1.36

Full‑time farmer (1 = yes, 0 = no) 0.52 0.50 0.02 0.14

Farm characteristics

Ownership type (1 = family, 0 = corporate) 0.83 0.88 − 0.04 1.20

Location (1 = Andalusia, 0 = rest of Spain) 0.88 0.83 0.04 1.04

Location in areas of natural constraints (1 = yes, 0 = no) 0.84 0.71 0.13 6.84**

Location altitude < 300m (1 = yes, 0 = no) 0.18 0.36 − 0.18 11.5***

Location altitude 300‑600m (1 = yes, 0 = no) 0.73 0.37 0.36 38.7

Product certification (1 = yes, 0 = no) 0.04 0.11 − 0.08 5.77

Utilized Agricultural Area, UAA (ha) 35.2 50.8 − 15.6 2.12

Irrigation area (%/UAA) 12.0 37.0 − 25.0 6.03

Farm resources

Land value (€/ha) 8,578 12,780 − 4,202 3.60

Family labor input (%/total labor) 61.4 56.0 5.49 − 1.84

Production intensity (€/ha) 406 575 − 169 5.94

Characteristics of the region

GDP per capita (€) 18,281 18,446 − 165 0.62

Total organic area (%/regional UAA) 21.6 20.9 0.72 − 1.18

Olive organic area (%/regional olive UAA) 9.22 9.36 − 0.14 0.12
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