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Abstract

There is exhaustive literature on technology adoption rates and the relationship between
technology adoption and relevant socioeconomic and policy variables. Yet adoption
estimates derived from the application of standard techniques such as the probit and
tobit yield biased estimates. This paper applies the modern evaluation technique: the
counterfactual outcome framework to data from about 400 households in Malawi to
assess the patterns of diffusion and adoption of improved pigeonpea varieties and their
determinants. We find the sample adoption rate of improved varieties to be 14 % while
the potential adoption rate if the improved varieties were widely disseminated is
estimated at 41 %. The adoption gap resulting from the incomplete exposure to
the improved pigeonpea is 27 %. Moreover, adoption is also found to be high
among female-headed households, older farmers and those with access to credit.
The findings suggest that for increased adoption, there is need for increased involvement
of extension workers is the dissemination of information about improved pigeonpea
varieties, a robust pigeonpea seed system to increase seed availability to farmers as well
as the need for improved access to credit.
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Background
Technology adoption studies are mainly focused on estimating adoption rates and un-

derstanding the relationship between technology adoption, its intensity and relevant

socioeconomic, and policy variables. While such studies are quite useful in explaining

some of the bottlenecks to technology adoption, they yield biased estimates of both

adoption rates as well as determinants of adoption when applied to a population that

is not fully aware of the technology. This is because although awareness is an import-

ant precondition for adoption to occur, farmer knowledge of the improved varieties is

neither random nor universal and may suffer from selection bias. This fact also

suggests that the relationship between awareness and adoption cannot be linearly

specified. Indeed Diagne and Demont (2007) empirically show that when a technology

is new and the target population is not universally exposed to it, the observed sample

adoption rate is not a consistent estimator of the true population adoption rate. It
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suffers from what is known as “nonexposure”1 bias and it yields inconsistent and biased

estimates of population adoption rates even when based on a randomly selected

sample.

Diagne and Demont (2007) show why taking the adoption rates within the subsample

of farmers exposed to the technology does not address the selection bias problem and

why such population estimates are not consistent estimates of the true population

adoption rate even if the sample is random. Such estimates may underestimate or

overestimate the true population adoption rate. In fact, the sample adoption rate

among the exposed is likely to overestimate the true population adoption rate because

of a positive population selection bias by which the subpopulation most likely to adopt

gets exposed first.

In this paper we provide a micro-perspective of the potential adoption rates and the

determinants of adoption of improved pigeonpea varieties among farmers from southern

Malawi. Given the low levels of awareness of improved pigeonpea varieties we do not

expect high adoption rates by farmers randomly sampled for this study. Moreover, the

interest in this paper is to assess the potential for adoption (potential demand) of these

technologies by the farmers once they get fully exposed to them and once other exogen-

ous factors are taken into account.

Pigeonpea (Cajanus cajan) is one of the most versatile and multipurpose dryland

legume crops with enormous potential for wide adoption by the farming communities

in the semi-arid tropics as a cash as well as food crop. Originated from India and

moved to Africa about 4,000 years ago, it is one of the many grain legumes being culti-

vated in Malawi where pigeonpea farmers consume up to 70 % of the total production,

and sell about 30 % of it to generate cash income Orr et al. (2013). Pigeonpea ranks as

the third most important legume crop after groundnut and beans in the period of

1991–2009 in Malawi. The 78,000 tons of pigeonpea produced per year, accounted for

23 % of Malawi’s total legume production (Simtowe et al. 2009).

Pigeonpea is widely grown as an intercrop with maize in southern Malawi, but it is

mainly grown as a boundary marker in northern Malawi. Although known for its soil

fertility enhancement attributes, Snapp et al. (2002) report that farmers are primarily

interested in pigeonpea as a market crop and as a weed suppression agent and that soil

fertility benefits are secondary. As expressed by Orr et al. (2015) Malawi was formerly

the world’s largest exporter of pigeonpea but its share in the world market has fallen

because of yield losses from Fusarium wilt. Pigeonpea exports from Malawi reach

Mumbai, India before the Indian harvest in October, when prices are highest. Exports

comprise both dry grain and de-hulled and split grain (Tur dhal). India’s imports of

pigeonpea are projected to reach 636,000 tonnes by 2020 (Abate et al., 2012), providing

Malawian growers an opportunity to increase exports.

The Malawi government policy on pigeonpea aims at promoting the production,

consumption and marketing of pigeonpea for food security, income and soil fertility

improvement. It is meant to be grown as either an intercrop in the maize farming

systems or as a pure stand Malawi Government (2006). To achieve this goal, the gov-

ernment has established a strong pigeonpea improvement program aimed at breeding

and disseminating improved pigeonpea varieties. In collaboration with the International

Crops Research Institute for the Semi-Arid Tropics (ICRISAT) and other national part-

ners, a number of improved pigeonpea varieties have been developed and released as a
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way of improving pigeonpea productivity and competitiveness in Malawi. Two long

duration (ICP 9145 and ICEAP 00040) and two short duration (ICPL 93027 and ICPL

87105) varieties were released for wider cultivation. Each of the released varieties has

economically important traits that make it attractive to smallholder farmers. ICP 9145

(released in 1987) and ICEAP 00040 (released in 2000) are resistant to Fusarium wilt

and harbour high on farm yield potential of up to 1.9 tons/ha (Høgh-jensen et al.

2007). The short duration varieties are less tolerant to Fusarium wilt but have an added

advantage in that they can be consumed as grain as well as a vegetable. Their capacity

to mature early also makes them more suited for the semi-arid regions and provides an

opportunity for double cropping in regions with long or bimodal rainfall seasons.

However, the improved varieties have not been widely disseminated and are not

widely known and adopted by the farming communities. Consistent with this expres-

sion, Freeman et al. (2002) report that although new pigeonpea technologies are avail-

able, their dismal adoption by the farming community in Malawi has been due to the

lack of knowledge about their existence. The continued use of local and inferior var-

ieties has led to the low pigeonpea yields of around 500 kg per hectare. Efforts to im-

prove the diffusion of improved pigeonpea varieties are widely seen as panacea to the

widely acknowledged problems of low rates of adoption. Moreover, beyond the lack of

awareness, there are other constraints to the adoption of improved pigeonpea varieties

that have not been fully understood and addressed for adoption to take place.

We follow Diagne and Demont (2007) to address this problem by employing a

programme evaluation methodology based on counterfactual outcomes to provide

unbiased estimators of the rate of adoption and the factors affecting adoption. The rest

of the paper is organized as follows: Pigeonpea production and utilization in Malawi

discusses pigeonpea production and significance while the data and analytical method-

ology are described in Methods. The results and discussions are presented in Results

and discussions, while section Conclusions.

Pigeonpea production and utilization in Malawi
In Malawi, pigeonpea is grown by smallholder farmers for both local consumption and

export. Malawi remained one of the largest producers of pigeonpea in Africa in the

period 1991–2006, producing about 78,000 metric tons per year, which accounted for

about 28 % of the continent’s production. While Malawi’s past pigeonpea trends in

harvested area, production, productivity and exports have been positive, and while the

global demand for pigeonpea continues to rise, the extent to which Malawian and

African farmers benefit from these markets will rely on the extent to which improve-

ments in productivity growth and market development help offset threats of intense

competition for export markets (mainly India) from Myanmar and other emerging pro-

ducers, as well as the surging demand for other substitutes (e.g. yellow pea produced

mainly in Canada and France).

The bulk of pigeonpea production is concentrated in the southern region of the

country (Fig. 1) where pigeonpea occupies a significant proportion of the farming sys-

tem, contributing up to about 20 % of farmers’ income (Orr. A, S.Orr 2002). The Blan-

tyre and Machinga Agricultural Development Divisions account for about 90 % of the

total pigeonpea area cultivated. Pigeonpea is widely grown as an intercrop with maize

in southern Malawi, but it is mainly grown as a boundary marker in northern Malawi.
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Although known for its soil fertility enhancement attributes, Snapp et al. (2002) report

that farmers are primarily interested in pigeonpea as a market crop and as a weed

suppression agent and that soil fertility benefits are secondary.

With regards to utilization, Muwalo et al. (1999) report that an estimated 65 % of the

pigeonpea produced in Malawi is consumed on-farm by the farm households either as

cooked dry peas or as immature pods and green seeds cooked as vegetables. The

consumption rate is similar to that of Kenya but substantially higher than the

consumption rate of 35 % reported for Tanzania. Lo Monaco (2003) attributes the low

on-farm consumption rates in Tanzania to the high integration of producers in the

market channels. An estimated 10 % of Malawi’s pigeonpea production is sold to the

domestic market while 25 % is exported.

Fig. 1 Map of Malawi showing distribution and area under pigeonpea production
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Methods
Theoretical approach2

The analysis in this paper is guided by a theoretical framework of technology adoption

under partial population exposure proposed by Diagne and Demont (2007). The frame-

work is relevant in this analysis because although a number of pigeonpea varieties have

been released and disseminated in Malawi, a very small fraction of the farming popula-

tion has been exposed to the technologies. Furthermore, exposure to the improved

pigeonpea by farmers was not random. Applying the treatment framework allows us to

control for both non-exposure and selection biases and helps in estimating true popula-

tion adoption rates and the determinants of adoption. The treatment variable in this

paper is “exposure” or “awareness” of at least one variety of improved pigeonpea such

that those exposed to improved pigeonpea are considered as “treated”, while those

unaware are considered “untreated”.

First proposed by Rubin (1974) the average treatment effect (ATE) parameter mea-

sures the effect or impact of a “treatment” on a person randomly selected in the popu-

lation Wooldrige (2002) In the context of this study “treatment” corresponds to

exposure to a technology and the ATE on the adoption outcomes of population mem-

bers is the population mean adoption outcome. This is the population mean adoption

outcome when all members of the population have been exposed to a technology and it

is, therefore, a measure of the intrinsic value of the technology as indicated by its po-

tential demand by the population. In that sense, the population mean adoption out-

come measured by the ATE parameter is the population mean potential adoption

outcome.

The difference between the population mean potential adoption outcome and the

mean actual (i.e. observed) adoption outcome, which is in fact the combined mean of

population exposure to and adoption of the technology, is the population non-exposure

bias. This is also known as the population adoption gap, because it measures in some

sense the unmet population demand for the technology. It is assumed that the gap ex-

ists because of the incomplete diffusion of the technology in the population (Diagne

and Demont 2007). Similarly, the mean adoption outcome in the exposed subpopula-

tion corresponds to what is defined in the treatment effect literature as the average

treatment effect on the treated, (i.e. the mean effect of a treatment in the treated sub-

population), commonly denoted as ATE1 or ATT Wooldrige (2002) The difference be-

tween the population mean adoption outcome (ATE) and the mean adoption outcome

among the exposed (ATE1) is the population selection bias (PSB). The consistent esti-

mation of ATE and ATE1, which are the main focus of the treatment effect method-

ology, requires controlling appropriately for the exposure status. The details of the

estimation procedures of the ATE parameters in the adoption context are given in

Diagne and Demont (2007).

Following Rosenbaum and Rubin (1983) and Wooldrige (2002), let y1 be the potential

adoption outcome of a farmer when exposed to improved pigeonpea varieties and y0 be

the potential adoption outcome3 when not exposed to them. The “treatment effect” for

the farmer i is the measure by the difference y1i - y0i Hence the expected population

adoption impact of exposure to the new varieties is given by the mean value E(y1 - y0).

However, as expressed by Diagne and Demont (2007) since exposure to a new variety is

a necessary condition for its adoption, we have y0 = 0 for all farmers not exposed.
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Hence the adoption impact of the farmer i is given by y1i and the average adoption im-

pact (of exposure) is given by ATE = Ey1. The problem is that we observe y1 only for

the farmers exposed to the new varieties. In impact evaluation literature this is referred

to as the problem of missing data. There is a problem of missing data because it is not

possible to measure the impact on the same individuals, as at each moment in time,

each individual is either under the intervention being evaluated or not and thus he or

she can not be in both. This implies that we cannot observe the outcome variable of

interest for the targeted individuals had they not been exposed to the new variety at the

same time.

In this paper, let us assume the binary variable w to be an indicator for exposure to

the improved varieties where w = 1 denotes exposure to at least one improved variety

and w = 0, otherwise. The estimation of adoption rates and its determinants can be

done based on the observed random vectors ((yi, wi, xi, zi) i = 1,.....,n) from a random

sample of the population; where xi is the vector of covariates that determines potential

adoption outcome (the value of y1) and zi is the vector of covariates that determine

exposure (the value of w1) with the possibility of xi and zi having some common

elements.

The ATE methodology enables the identification and consistent estimation of the

population mean adoption outcome E(y1) and the population mean adoption outcome

conditional on a vector of covariates x E(y1|x), which in this framework corresponds to

the conditional population mean adoption outcome (ATE) denoted usually as ATE(x)

(Wooldrige 2002 chapter 18). One approach to the identification of ATE is based on

the so-called conditional independence assumption (Wooldrige 2002, chapter 18) also

referred to as the ignorability assumption, which states that the treatment status w is

independent of the potential outcomes y1 and y0 conditional on the observed set of

covariates z that determine exposure (w). This can be expressed as P(y1 = 1|z); i = 0, 1.

The ATE parameters identified through the conditional independence assumption

can be estimated from observed random vectors (y1, wi, xi, zi)i = 1,…,n from a random

sample of the population either using pure parametric regression based-methods where

covariates are possibly interacted with treatment status variable (to account for hetero-

geneous impacts) or they are based on a two-stage estimation procedure where the

conditional probability of treatment P(w = 1|z)≡P(z), called the propensity score, is esti-

mated in the first stage and the ATE is estimated in the second stage by parameric or

nonparametric methods (Diagne and Demont 2007).

In addition to the conditional independence assumption, it is assumed that potential

adoption is independent from z, conditional on x : P(y1 = 1|x, z) = P(y1 = 1|x). Thus we

can be able to implement the estimation of adoption rate and its determinants from

the exposed sub sample alone, if the conditional independence assumption holds and if

potential adoption is independent of vectors of exposure determinants conditional on

the vector of adoption determinants. Then the ATE (x) can be nonparametrically iden-

tified from the joint distribution of (y, z) condition on w = 1 by:

ATE xð Þ ¼ E y x; w ¼ 1j Þð ð1Þ

This can be consistently estimated from a random sample of yi, xi = 1,… n drawn

from the exposed subpopulation only.
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The parametric estimation procedure of ATE is based on the following equation that

identifies ATE(x) and which holds under the conditional independence (CI) assumption

(see Diagne and Demont 2007):

ATE xð Þ ¼ E y1 xj Þ ¼ E y x; w ¼ 1j Þðð ð2Þ

The parametric estimation proceeds by first specifying a parametric model for the

conditional expectation in the right hand side of the second equality of equation (2)

which involves the observed variables y, x and w:

E y x; w ¼ 1j Þ ¼ g x; βð Þð ð3Þ

where g is a known (possibly nonlinear) function of the vector of covariates x and the

unknown parameter vector β which is to be estimated using standard Least Squares

(LS) or Maximum Likelihood Estimation (MLE) procedures using the observations

(yi, xi) from the subsample of exposed farmers only with y as the dependent variable

and x the vector of explanatory variables. With an estimated parameter β̂ , the predicted

values g xi; β̂
� �

are computed for all the observations i in the sample (including the ob-

servations in the non-exposed subsample) and ATE, ATE1 and ATE0 are estimated by

taking the average of the predicted g xi; β̂
� �

i ¼ 1;…; n across the full sample (for

ATE) and respective subsamples (for ATE1 and ATE0):

AT̂E ¼ 1
n

Xn
i¼1

g xi; β̂
� �

ð4Þ

AT̂E ¼ 1
ne

Xn
i¼1

wig xi; β̂
� �

ð5Þ

AT̂E0 ¼ 1
n−ne

Xn
i¼1

1−w1ð Þg xi; β̂
� �

ð6Þ

As also expressed by Diagne and Demont (2007) the effects of the determinants of

adoption as measured by the K marginal effects of the K-dimensional vector of covari-

ates x at a given point �x are estimated as:

∂E y1j �xð Þ
∂xk

¼
∂g �x; β̂
� �

∂xk
k ¼ 1;…;K ð7Þ

where xk is the kth component of x.

In our empirical analysis below, we have estimated the ATE, ATE1, ATE0, the

population adoption gap GÂP ¼ J ÊA−AT̂E
� �

4, and the population selection bias

PŜB ¼ AT̂E1−AT̂E
� �

parameters using the parametric regression based estimators

(equations 4, 5, and 6).

The estimation of the determinants of exposure is important for its own sake as it

can provide valuable information regarding the factors influencing farmers’ exposure to

a new technology. These factors, which are mostly related to the diffusion of informa-

tion, can very well be different from those influencing the adoption of the technology

once exposed to it (Diagne and Demont 2007). In our estimation of the parametric

regression based estimators, since y is a binary variable, equation 3 above is effectively

a parametric probabilistic model. We, therefore, have E(y|x,w = 1) = P(y = 1|x, w = 1)
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with an assumption of a probit model, g(x, β) = Φ(xβ).In this case the parametric es-

timation of ATE reduces to a standard probit estimation restricted to the exposed

sub-sample. The marginal effects in equation (7) are also estimated using this ATE

parametric model. The estimation was done in STATA using a STATA routine devel-

oped by Diagne (2012).

Data

The data used in this analysis were collected by the International Crops Research Institute

for the semi-Arid Tropics (ICRISAT), in collaboration with the Centre for Agricultural

Research and Development (CARD) of the University of Malawi and the National

Smallholder Farmer’s Association (NASFAM) in between April and May 2008, in Malawi.

The data were collected through a household survey conducted in the three districts

of Chiradzulu, Thyolo, and Balaka. A multi stage sampling procedure was employed

in selecting households for the survey. The first stage involved a purposeful sampling

of the three districts that are among the major growing areas of pigeonpea in the southern

Malawi. Once the districts were selected, the second stage involved a purposeful selection

of four largest pigeonpea producing sections5 in each district. Consequently this led to the

selection of 12 sections for the study area. Third, a complete list of all the villages in each

section was drawn with the help of the heads of Extension Planning areas (EPA) and their

staff. Three (3) villages were randomly selected from each section. Fourth, and last a

complete list of all farm families was then drawn for each of the randomly sampled

villages. Thirteen (13) farmers were randomly sampled from a list of farm families in each

village. This led to the selection of 440 households for the household survey. Data were

collected at village and at farm-household levels. At the village level, data collected

included crops grown, prices offered for crop produce, and the village infrastructures. At

the farmer level data collected included the farmer knowledge of varieties and varieties

cultivated in 2006/07. Prior to the survey a list of known modern and traditional varieties

in the village was constructed and each farmer selected for the survey was asked whether

he or she knew each of the varieties and crops. If the answer to the question was a ‘yes’

then the farmer was asked whether he or she had ever cultivated the variety and if he or

she cultivated it in 2006/07 season. In the present study we define knowledge or exposure

to a variety as a “yes” answer to the first question and adoption as the cultivation of the

variety.

Results and discussions
Farm household characteristics

Table 1 reports descriptive statistics disaggregated by their adoption status for 440

surveyed farmers. Adopters are defined as households that planted at least one variety

of improved pigeonpea during the 2006/07 cropping season. Improved pigeonpea

varieties were grown by 14 % of the sampled households in 2006/07 cropping season.

About three-quarters of the households were male-headed, and the proportion of male-

headed households was higher among non-pigeonpea growing (72 %) than among the

sub-sample of pigeonpea growers (66 %). The difference was significant at 5 % probabil-

ity level. This observation suggests that improved pigeonpea cultivation is highly pre-

ferred by female farmers. The average household size for the sampled households is 4.8
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persons per household. This is slightly higher than the national average of 4.4 persons per

household (National Statistics Office, 2005). Adopting households have significantly

(at 10 % probability level) larger households (5.2 persons) than the non-adopting

households (4.6 persons). The average land holding size for the sampled households is 2.3

acres (equivalent to 1 hectare) and adopting households have significantly larger portions of

land (3.1 acres) than the non-adopting households (2.1 acres). The education level of the

household’s head is expressed in terms of years of schooling and it is not significantly differ-

ent between adopters and non-adopters. It is also observed that adopting households have a

significantly high amount of household off-farm income (MK58,464) than non-adopting

households (MK16682). More adopters (33 %) reported having access to credit6 than non

adopters (15 %). Access to markets was measured by capturing distances to the vil-

lage market. The average distance to the village market is 2.4 kilometres. Adopting

households have a significantly shorter distance (0.7 km) to the market, than non-

adopting households (2.7 km), which suggests that market access could have an ef-

fect on the adoption status of a farm-household. There are no significant differ-

ences between adopters and non-adopter in the degree of access to extension

services. Member ship in social groupings such as in faith based organization is

more pronounced among adopters (13 %) than non-adopters (7 %) suggest a posi-

tive correlation between adoption and membership in a social grouping.

Table 1 Household characteristics by adoption status of improved pigeonpea in 2006/07

Characteristic Non-adopters
(n = 381) 86 %

Adopters
(n = 59) 14 %

Total
(n = 440)

Difference

Socio-demographic factors

Proportion of male farmers 72.3 (2.1) 66.1.4(2.9) 72.5.1(2.1) 7.7(3.5)**

Age 45.3 (0.91) 45.9 (2.3) 45.4 (0.84) −0.60 (2.48)

Household size 4.6 (0.10) 5.2 (0.28) 4.8 (0.09) −0.5(0.28)*

Years of residence in the village 30.4 (1.00) 29.6(1.22) 30.1(0.77) 0.83(1.5)

Land holding size 2.1 (0.7) 3.1 (2.3) 2.3 (0.1) −0.9 (0.2)***

Off-farm income (MK) 16682 (1679) 58464(21409) 22298(3287) −42781(9440)*

Value of assets (MK) 5856(729) 9627(3790) 6362(810) −3770(2374)

Education and experience farming

Years of schooling 4.9(0.19) 5.1(0.24) 5 .0(0.15) −0.18 (0.30)

Years of experience in pigeonpea farming 15.1 (0.66) 18.3 (0.94) 15.5 (0.7) −3.2(1.1)*

Years of experience in groundnut farming 8.6 (0.57) 12.3 (0.91) 8.7 (0.49) −4.1(1.0)**

Institutional factors

Proportion farmers with access to credit 15.2 (2) 33 (6) 17.7 (1.1) −18 (5)***

Distance to village market 2.7 (0.13) 0.73 (0.19) 2.4 (0.1) 1.91 (0.36)***

Distance to the farmer club 0.15 (0.03) 0.03 (0.02) 0.41(0.03) 0.13 (0.09)

Distance to an agricultural office 4.5(0.14) 4.7(0.37) 4.6(0.13) −0.04 (0.39)

Contacts with government extension 5.6 (0.78) 2.8(0.90) 5.3 (0.77) 2.11 (2.1)

Contacts with NGO extension worker 1.8 (0.8) 0.46 (0.15) 1.2(0.48) 1.33 (1.0)

Membership in faith based organization (%) 51 (20) 0.50 (14) 12.5 (1.3) 12.5 (2.7)***

Membership in a farmer’s club 7.6(1.3) 13.6(4.4) 8.4(1.3) 5.9(3.8)

Source: ICRISAT Treasure Legumes/TLII Study (April- May 2008)
Data with asterisk Indicates that difference between adopters and non-adopters is statistically significant at 95 % level (t-tests
are used for differences in means). *indicates significance at 10 %. **indicates significance at 5%. ***indicates significance
at 1%
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Pigeonpea diffusion and adoption: a descriptive analysis

In this paper, we use the concept “diffusion” to imply awareness or knowledge of the

improved pigeonpea varieties by the farmers. In the adoption literature, however, the

terms “diffusion” and “adoption” are mostly used interchangeably. (see for example

Feder et al., 1985; Rogers, 1976; Sunding & Zilberman, 2001). Feder et al. (1985)

describe technology adoption as a multistage process the decision maker undergoes

from the time they get exposed to the technology (become aware of its existence)

through to the time that they decide to start using the technology. Central to the

adoption decisions is the role of information about the technology.

As depicted in Fig. 2, the adoption process starts with the potential adopter becoming

aware of the existence of a technology. The second stage involves a process of information

acquisition, through which the potential adopter gets to know technology attributes and

builds up his or her perceptions (positive or negative) about the technology. While this

phase determines whether the producer has heard about the new technology of pigeonpea

on not, it is also a learning phase during which the potential adopter gets to understand

the attributes of a technology further. Consistent with this notion, Klotz et al. (1995) posit

that a producer's optimal information level is the solution to an underlying utility-

maximization problem characterized by an income-leisure trade-off and that conditional

upon the producer being aware of a new technology, the decision of whether or not to

adopt the new technology is made. The third stage involves trial or experimentation by

the potential adopter before adopting the technology. Based on perceived benefits of the

technology, the individual goes through the fourth stage which involves the actual tech-

nology adoption. Once the technology is adopted, the adopter may decide to continue

using it or discontinue depending on the experience and benefits after adoption. In this

paper we follow the definition of Feder et al. (1985) of adoption as the decision to use an

innovation in long-run equilibrium given full information about its potential. We thus

confine the definition of adoption to the growing of one or more improved pigeonpea

varieties by a farmer.

Table 2 depicts results of pigeonpea varieties widely known by farmers. There is as a

universal awareness (99 %) of at least one pigeonpea (local + improved) variety by the

respondents. However, the awareness rate for improved pigeonpea varieties (ICP 9145

locally known as Sauma -literally translated as “doesn’t dry” in reference to its drought

torelance and ICEAP 00040- locally known as Kachangu- which can be translated _as

“quick” in reference to its early maturity) is much lower, estimated to be 34 % of the

total sample. Knowledge of improved pigeonpea varieties is more prevalent in Thyolo

(47 %) and Balaka (49 %).

Fig. 2 Stages of the adoption process. Source: Adopted with some modifications from Phillips (2008)
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Of the two improved varieties, ICEAP 00040 is the most widely known (20 %) while

ICP 9145 is only known by 8 % of the farmers. These findings are indicative of a fail-

ure and inefficiency of the system through which technologies are disseminated in

Malawi hence suggesting the need for intensified dissemination efforts to promote

the technologies. There is an opportunity for ICRISAT to use existing structures for

government extension services to disseminate the information to farmers in potential

pigeonpea grown areas.

Although more respondents expressed awareness of the varieties, fewer reported ever

growing them and a much smaller proportion of them actually grew the crop in 2006/

2007 season. For local pigeonpea although 71 % of the farmers expressed some know-

ledge of the crop, only 57 % reported that they ever grew it and only 31 % grew the

crop in the 2006/2007 season. For Mthawajuni variety, 53 % know the crop, 48 % indi-

cated that they ever grew the crop, while 44 % actually grew it in 2006/2007. As for the

improved varieties, farmers are more aware of ICEAP 00040 (20 %) and 18 % have ever

grown it but only 13 % grew it in 2006/2007. In general, 54 % of the sample households

reported that they grew at least one variety (local/improved) of pigeonpea in 2006/07,

however only 14 % grew at least one improved variety of pigeonpea. It is also interest-

ing to note that there are smaller proportions of households growing the varieties in

2006/07 than those that ever grew, indicating that there is some form of dis-adoption

Table 2 Diffusion and adoption of pigeonpea: Proportion of farmers that were aware and those
that adopted different pigeonpea varieties in 2006/2007

Characteristic Chiradzulu
(n = 152)

Thyolo
(n = 144)

Balaka
(n = 144)

Total
(n = 440)

Know the variety (%)

Local (miscellaneous) 95 94 97 95

Mthawajuni 99 25 90 71

ICEAP 00040 4 40 39 28

ICP 9145 1 8 25 11

Know at least one pigeonpea variety 100 98 100 99

Know at least one improved variety 5 47 49 34

Ever planted (%) !

Local(miscellaneous) 63 87 80 77

Mthawajuni 99 17 76 64

ICEAP 00040 3 31 38 24

ICP 9145 0 6 19 8

Planted in 2006/07 season (%)

Local (miscellaneous) 7 73 49 43

Mthawajuni 97 10 70 59

ICEAP 00040 (Kauma) 3 25 27 18

ICP 9145 (Kachangu) 0 4 13 6

Planted at least one pigeonpea variety 43 33 87 54

Planted at least one improved variety 2 5 33 14

Planted in 2006/07 season (% of the exposed sub-sample)

Planted at least one pigeonpea variety 43 34 87 55

Planted at least one improved variety 33 10 66 36

Source: ICRISAT Treasure Legumes/TLII Study (April- May 2008)
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for almost all varieties. Although, this paper does not explore causes of dis-adoption,

this is an important area of research to be investigated. This presence of dis-adoption is

expected as some farmers might have been trying or experimenting on the technology

before fully deciding on whether or not to adopt.. Consistent with this observation,

Rogers (2003) observes that there are five stages in the adoption process namely; (a)

knowledge, (b) persuasion, (c) decision, (d) implementation, and (e) confirmation. An

adopter may discontinue the use of the technology for a number of reasons including

economic constraints as well as changes in preferences.

These sample adoption rates are likely to be biased downwards because they include

farmers who were not yet exposed to the varieties and, therefore, they cannot adopt

unless exposed. In fact some farmers would have adopted the pigeonpea varieties if they

had been exposed to them, but in this sample adoption rates they are considered as

non- adopters. Therefore, an assessment of adoption rates among the exposed sub-

population appears more appealing in terms explaining the potential adoption rates

because it somehow addresses the problem of non-exposure bias.

As indicated in Table 2, the adoption rate among the sub-sample of farmers that were

aware of pigeonpea is much higher than the adoption rates reported earlier for the

whole sample. The overall adoption rate for any pigeonpea among the sub-sample of

exposed farmers in 2006/07 season is 55 % compared to a lower adoption rate of 54 %

for the whole sample. The two adoption rates are, however, almost equal because there

is an almost universal awareness (99 %) of at least one pigeonpea variety among the

sampled households. The finding is consistent with prior expectation in that non-

exposure bias diminishes as the number of people exposed to the technology in a popu-

lation increases.

However, there is a huge difference in adoption rates for improved varieties between the

sample adoption rate and the adoption rate within the exposed sub-sample. About 37 %

of the farmers that are aware of at least one improved pigeonpea variety adopted the var-

ieties in 2006/07, a rate that is significantly higher than the 14 % adoption rate reported

for the whole sample. An interesting observation is that although Thyolo registered a lar-

ger proportion (40 %) of farmers that were aware of the improved pigeonpea, the adoption

rate among the exposed sub-sample is the lowest at (10 %), while Chiradzulu with the

lowest rate of awareness of improved varieties (5 %), registered an adoption rate of 2 % for

the total sample and of 33 % within the exposed sub-sample.

While adoption rates for the exposed sample seem more plausible in explaining

potential population adoption rates, Diagne (2006) reports that they are likely to signifi-

cantly over-estimate the population adoption rate due to the positive population selection

bias by which the population most likely to adopt gets exposed first. Diagne (2006) points

out that the positive selection bias arises from two sources. The first source is the farmer’s

self-selection into exposure. The second source of selection bias is the fact that

researchers and extension workers target their technologies at farmers that are more likely

to adopt.

Determinants of exposure to improved pigeonpea varieties

In this study, only 34 % of the sample households were exposed to a t least one of the

improved pigeonpea varieties (ICEAP 040 and ICPL 9145). Based on this we estimate a
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probit regression of factors that affect the propensity of exposure to improved varieties

of pigeonpea. Table 3 indicates results from a probit estimation of the determinants of

the probability of getting exposed to at least one improved pigeonpea varieties. Several

variables show statistically significant coefficients at 5 % level.

Farmer's age may negatively influence access to information about improved varieties.

It may be that older farmers are more risk averse and less willing to gather information

about new technologies. However, as also noted by Adesina and Forson (1995) the

expected result of age is an empirical question, because in some cases older farmers

may have more experience in farming and are better able to assess the characteristics

of modern technology than younger farmers, and hence a higher probability of adopt-

ing the practice. Our results show that the age of household head has a negative coeffi-

cient that was statistically significant at 5 % level suggesting that older farmers are less

likely to get exposed to the new pigeonpea varieties. This can also be explained by the fact

that older farmers may incur higher search costs for the new technologies; hence lack

information on the existence of improved pigeon pea varieties (Feder and Slade, 1984).

The proxy variables for access to government extension services – distance to agricul-

tural extension office- was not significant, even though it returned the expected sign. This

is consistent with the fact that government extension is no longer a major provider of

information.

As indicated in Fig 3, 78 % of the pigeonpea farmers received pigeonpea variety infor-

mation (local and improved) through contact with other farmers. The other frequently

mentioned sources of variety information include parents, seed/grain stockist, Less

than 10 % of them reported getting information from government extension workers.

Table 3 Marginal Effects of the determinants of exposure to improved pigeonpea

Variables Marginal effects SE

Gender of head (1 = Male, 0 = Otherwise) 0.025 0.063

Age of head (yrs) −.0184b 0.009

The square of age 0.000 0.000

Education of head (yrs) −0.005 0.008

Household size 0.089 0.056

Distance to the market −0.055a 0.032

Distance to the agricultural extension office −0.002 0.009

Membership in a social//faith based group (1 = yes, 0 = otherwise) 0.184a 0.080

Membership in farmer club (1 = yes, 0 = otherwise) 0.026 0.091

Number of years lived in village 0.004b 0.002

The value of assets (MK) 0.039a 0.020

The Land holding size (ha) 0.032 0.026

Access to credit 0.091 0.067

Balaka 0.443c 0.116

Thyolo 0.535c 0.062

Number of interviews 440

Pseudo R2 0.2363

LR Chi 2 132.932

AIC 463.6344

Source: ICRISAT Treasure Legumes/TLII Study (April- May 2008)
Key: asignificant at 10 %, bsignificant at 5 % and csignificant at 1 %
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The insignificant role of government in providing extension services is consistent with

expectation because there are very few extension workers currently working for govern-

ment. The other reason could be that government extension services appear to be

concentrated on strategic crops such as maize and tobacco.

Since the early 1980s, Malawi pursued a structural adjustment path which as reported

by Kumwenda and Madola (2005), also required government to undertake cutbacks in

expenditure including funding to the Ministry of Agriculture hence it greatly affected

the government provision of extension services. Furthermore, the formal government

extension system is biased towards maize, the main staple and tobacco, the main cash

crop while legumes such as pigeonpea do not feature highly in the system.

Instead we find that social linkages influence access to information on improved

pigeonpea varieties. For example the membership in a social grouping such as a faith

based organization has a positive and significant effect on the propensity to get exposed

to improved varieties. This finding is also consistent with the debate on the role of

social interactions in determining the rate at which technologies are adopted (see for

example, Conley and Udry 2005, Manski 2004). While the activities in such groups are

not primarily social interactions they shape local social norms and networks that stimu-

late information sharing and social learning, a process that has a bearing on technology

awareness. Acknowledging the role of social interactions in technology diffusion,

Rogers (2003) contends that the diffusion process consists of interpersonal network

exchanges between those individuals who have already adopted an innovation and

those who are then influenced to do so. Such a process can be enhanced by farmer’

membership in social grouping that also strengthens their social capital. The number of

years of residence in a village has a positive and significant effect on the propensity to

get exposed to improved varieties which against provides evidence of the significance

of social capital in information sharing.

A proxy variable for access to markets- i.e. the distance to the nearest main market

returned a negative and expected sign, and it was significant at 10 % level. The results

imply that a percentage increase in the distance from the market to the household

reduces the probability of exposure to new variety by about 6 %. Thus the further away

from markets the less likely a farmer is to be aware of the existence of new pigeonpea

varieties. Generally there is a very small commercial market for improved pigeonpea

seed to enable seed purchases as farmers often save grain and recycle as seed or

Fig. 3 Sources of information about pigeonpea varieties (local and improved)

Simtowe et al. Agricultural and Food Economics  (2016) 4:7 Page 14 of 21



purchase grain from the local market to use as seed (Tripp 2000). However, in this

study about 23 % of the pigeonpea seed was purchased from the market (Fig 4).

These findings underscore the need for further development of the market based seed

systems in promoting information diffusion. District dummy variables of Balaka and

Thyolo, returned positive and significant coefficients indicating that farmers that

resided in the two districts had a higher propensity to get exposed to at least one

improved pigeonpea varieties compared to Chiradzulu. Being resident in Balaka and

Thyolo increases the probability of exposure to new varieties by 44 % and 54 %,

respectively. This may be partly attributed to the fact that field trials for the improved

pigeonpea varieties were extensively conducted in the two districts before the variety

was released and farmers might have continued sharing information about the varieties.

In general, the findings on awareness underscore the need for intensified efforts to

create awareness about the existence of improved pigeonpea varieties among farmers.

The methods that have proven to be effective are already in place but they require

further scaling up. Such methods include (i) on-farm trials; (ii) demonstration plots

controlled by agricultural extension agents; (iii) field days for farmers; and (iv) agricul-

tural shows to which farmers are invited and (v) farmer-to-farmer exchange of informa-

tion (see for example Bentley (2009); Akinsorotan (2009); Davis, et al. (2010)).

Adoption rates for improved Pigeonpea

The adoption estimates for improved pigeonpea are presented in Table 4. The results

show that the sample adoption rates – (joint exposure and adoption rate) is the same for

the ATE probit, and the classic probit estimated at (14 %) and that they all yield the same

range for the 95 % confidence interval (between 10 % and 17 %). Again the finding that

the sample estimate is the same as the estimate obtained by ATE probit method suggests

that the assumptions underlying the models (eg, random sampling, distribution) are

plausible in as far as estimating the joint exposure and adoption rate for the whole popu-

lation and its determinants is concerned (Diagne and Demont, 2007).

The results further indicate that the joint exposure and adoption rate within the pres-

ently pigeonpea-exposed subpopulation estimated by the classical probit model (22 %)

is different from those estimated by the sample moments and ATE-probit model

(39 %). Indeed it can be seen that the classic probit model estimate of 22 % has a 95 %

confidence interval ranging between 19 % and 26 %, a range that is far below the

Fig. 4 The share of seed as a percentage of total seed from different sources
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consistently estimated value of 41 %, a finding that suggests that the classic probit

model has a problem of attenuation bias (Yatchew and Griliches, 1985) because the

model is based on the full sample without controlling for exposure bias. Diagne and

Demont (2007) note that the downward bias of the classical probit model estimate of

the probability of joint exposure and adoption for the exposed subpopulation implies

that its coefficient estimates are likely to be inconsistent for a model of determinants of

adoption. These results, therefore, represent the expected joint exposure and adoption

rate for the population which is not the desirable parameter of interest in most

adoption studies.

The desirable parameter in adoption studies is the full population adoption rate

(ATE) which provides an estimate of the potential demand of the pigeonpea technology

by the target population. The full population adoption rate for improved pigeonpea is

estimated to be 41 % for ATE probit method. This implies that the pigeonpea adoption

rate in Malawi could have been 41 % in 2007 if the whole population had been exposed

to improved varieties of pigeonpea, instead of the joint exposure and adoption rate of

14 %. Thus when compared to the current sample adoption rate of 14 %, there is a sub-

stantial population adoption gap of 27 % due to the population’s incomplete exposure

to the pigeonpea varieties. The estimated adoption gap is statistically significantly

different from zero at 1 % level. This finding implies that there is potential for increas-

ing adoption rate by 27 % once all farmers become aware of at least one improved

pigeonpea variety.

The adoption rate within a sub-population of farmers that are exposed to at least one

improved pigeonpea variety (ATE1) is estimated to be 39 % for the ATE parametric

probit model, while the estimated potential adoption rate within the sub-population

not yet exposed to pigeonpea variety (ATE0) is 42 % for the parametric probit model.

The estimated population selection bias (PSB) is 2 % but it is not significantly different

Table 4 Estimates of improved pigeonpea adoption rates (full sample) and their 95 % confidence
intervals among all farmers

Parameters Sample moments
estimate

Classical probit joint
exposure and
adoption model

ATE probit adoption
model

Joint exposure and adoption rate (Probability
of knowledge and adoption of at least one
improved pigeonpea variety):

In the full population 0.14(0.10–0.16) 0.14 (0.10–0.16) 0.14 (0.10–0.16)***

Within the improved pigeonpea-exposed
subpopulation

0.38 (0.29–0.48) 0.22 (0.19–0.26) 0.39 (0.33–0.45)***

Pigeonpea adoption rate (Probability of
adopting at least one improved pigeonpea):

In the full population (ATE) 0.41 (0.29 0.52)***

Within the improved pigeonpea –exposed
subpopulation (ATE1)

0.39 (0.33–0.45)***

Within the sub-population not exposed
to the improved pigeonpea (ATE0)

0.42 (0.26 0.57)***

Estimated population adoption gap:

Expected non-exposure bias(NEB) −0.27(−0.37–.17)***

Expected population selection bias (PSB) −0.17 (−0.11–.07)

Source: ICRISAT Treasure Legumes/TLII Study (April- May 2008)
* Significant at 10 %, ** significant at 5 % and *** significant at 1 %
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from zero. This implies that the adoption probability for a farmer belonging to the sub-

population of informed farmers is not significantly different from the adoption prob-

ability for any farmer within the population. Nonetheless the negative PSB indicates

that the farmers exposed to the improved pigeonpea varieties are less likely to adopt at

least one improved pigeonpea variety than any farmer randomly selected from the

population. Since the PSB is insignificant, we cannot reject the null hypothesis that a

farmer selected randomly within a population has the same probability of adopting

improved pigeonpea varieties as a farmer selected within the sub-population of those

informed about improved pigeonpea varieties.

The above adoption rates are based on full sample of farmers that included three

groups; thus, (i) non-pigeonpea growers, (ii) pigeonpea growers that did not adopt

improved varieties, and (iii) pigeonpea growers that adopted improved varieties. There-

fore the results on potential adoption rates measure the adoption probability of im-

proved pigeonpea varieties by a farmer randomly selected for a population composed

of the three groups described above.

Determinants of adoption of improved pigeonpea varieties

Results on the determinants of improved pigeonpea adoption for the classic “adoption”

model, and ATE probit model are presented in Table 5. The results are presented in

the form of marginal effects. There are striking differences in the magnitude of the

coefficients as well as their marginal effects between the two models. In general the

Table 5 Determinants of adoption of improved pigeonpea- Marginal effects

Variables ATE corrected Classical adoption

Marginal effect SE Marginal effect SE

Gender of head (1 = Male, 0 = Otherwise) −0.282** 0.139 −0.042 0.035

Age of head (yrs) 0.048** 0.023 −0.001 0.004

The square of age 0.000 0 0 0

Education of head (yrs) 0.030 0.016 0.001 0.004

Household size −0.007 0.113 0.019 0.028

Distance to the village market 0.006 0.03 −0.006 0.006

Distance to the agricultural office −0.016 0.017 −0.008** 0.004

Membership is a faith group (1 = yes, 0 = no) −0.276** 0.119 −0.04 0.031

Membership in farmer club (1 = yes, 0 = no) 0.223 0.193 0.081 0.074

Number of years lived in village −0.007 0.004 0.001 0.001

The value of assets (MK) 0.002 0.042 0.015 0.009

The Land holding size (ha) −0.033 0.06 0.001 0.02

Access to credit .410*** 0.11 0.146** 0.045

Balaka 0.359 0.251 0.289** 0.106

Thyolo −0.351 0.189 0.059 0.05

Number of interviews 152 440

Pseudo R2 0.4121 0.3827

LR Chi 2 73.9007 72.314

AIC 156.2294 269.215 0.05

Source: ICRISAT Treasure Legumes/TLII Study (April- May 2008)
Key: * significant at 10 %, ** significant at 5 % and *** significant at 1 %
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marginal effects of the ATE probit model are larger in absolute values than those of the

classic “adoption” model. The observed findings are consistent with the theoretical

expectation in that as reported by Diagne and Demont (2007), the conditional mean

“adoption” function estimated in the classical adoption model is equal to the true popu-

lation average conditional adoption function (the “true” population adoption function)

multiplied by the probability of being aware of the technology. Hence, for a factor

determining adoption alone and not awareness, its marginal effect calculated from the

classical “adoption” model is equal to its marginal effect from the true adoption model

multiplied by the conditional probability of awareness, a quantity always between 0 and

1 and usually very small when not many farmers are aware of the technology. It is also

important to note that some coefficients are significant in both models while some are

significant only in the ATE probit model. Results show that factors such as gender of

the head of household, the age of a farmer and access to credit contribute significantly

to the probability of adopting improved pigeonpea adoption.

The coefficient for gender of household head is negative and significant at 5 %

suggesting that the probability of adopting at least one improved pigeonpea variety

diminishes with being a male farmer. Being a male headed household reduces the pro-

pensity to adopt improved pigeonpea varieties by about 28 %. This is apparently con-

sistent with previous assertions from farmers in Malawi where women farmers prefer

to pigeonpea cultivation and often refer to pigeonpea as “our beef” a reference to the

crops high protein content, and frequently sell the crop as a fresh.

The age of the farmer returned a positive and significant marginal coefficient suggest-

ing that a percentage increase in age increases the propensity to adopt improved

varieties by 5 percent. The findings might be explained by the fact that although older

farmers face higher search costs for information on new technologies which reduces

their exposure, once they overcome the information barrier, older farmers are quick to

adopt them because they have a higher resource endowment than young farmers. This

observation is quite consistent with the economic constraints paradigm explained by

Feder and Slade, (1984). In our case it might suggest that older farmers are able to

purchased improved seed for pigeonpea which young farmers cannot due to financial

constraints. Yet another explanation could be that young people have more viable

options or alternative investments hence may delay adoption of improved varieties.

The membership in a faith based group returned a negative and significant marginal

effect indicating that although more likely to know about the existence of improved

pigeonpea varieties, membership in a faith based social grouping lowers the propensity

to adopt pigeonpea by 27 %. One possible explanation for the positive coefficient in the

exposure model can be drawn from innovation-diffusion paradigm, while the explan-

ation for the negative coefficient in the adoption model can be drawn from the eco-

nomic constraint paradigm of the adoption model. The innovation-diffusion paradigm

is based on the assumption that the technology is technically and culturally appropriate

but the problem of adoption is one of asymmetric information and very high search

costs (Feder and Slade, 1984). The economic constrain paradigm states that input fixity

in the short run, such as access to credit, land, labor or other critical inputs limits pro-

duction flexibility and conditions technology adoption decisions (Uaiene et al. 2009).

This finding could suggest that once farmers with membership in faith based organiza-

tions overcome information search costs and have access information on improved
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varieties, they are unable to overcome other economic and non-economic constraints

to be able to adopt improved pigeonpea varieties.

Again, consistent with the economic constraint paradigm of adoption models, access

to credit returned an expected positive and significant marginal effect. Indeed the

household that borrowed some money from the lending institution increased the

propensity of adopting improved pigeonpea by about 40 %. Seeds are not a lumpy in-

vestment, but credit and cash constraints can be important because adoption of im-

proved pigeonea might entail purchasing seed, hiring extra labour which increases the

cost of production. With the availability of credit a household can purchase improved

seed and hire extra labour. In this study only 16 % of the farmers indicated that they

borrowed money from either credit institutions or informal institutions, despite the

high demand for credit. This finding suggests that there exists a great scope for increas-

ing the cultivation of improved pigeonpea through an improved access of farmers to

credit markets.

Conclusions
This paper has provided estimates of actual and potential adoption rates and the deter-

minants of adoption for the improved pigeonpea varieties in Malawi and has shown the

importance of appropriately controlling for exposure and selection bias when assessing

the adoption rates of a technology and its determinants. We find that improved pigeon-

pea adoption rates in Malawi could have been up to 41 % in 2007 instead of the

observed sample adoption rate of 14 % if the whole population was exposed to the

improved pigeonpea varieties. The non-exposure bias of 27 % suggests that there is

potential for increasing the adoption rate of improved pigeonpea by 27 % if its diffusion

to the population can be completed and if other economic constraints are addressed.

Moreover, the observation that only a third (34 %) of the farmers was aware of at

least one of the improved pigeonpea varieties underscores the urgent need for scaling

up efforts disseminate information about improved pigeonpea varieties and their poten-

tial benefits among farmers. The methods that have proven to be effective are already

in place but they require further scaling up. Such methods include on-farm trials, dem-

onstration plots controlled by agricultural extension agents, field days for farmers, and

agricultural shows to which farmers are invited.

The study has shown that the exposure to improved pigeonpea varieties and their

adoption by farmers is influenced by a number of other factors and that in some cases

factors affecting the two outcomes (exposure and adoption) are different. The probabil-

ity of a farmer’s awareness of at least one improved pigeonpea variety was higher

among younger farmers, members of faith based organization and those that have lived

longer in the village of residence at the time of the survey, whereas adoption propensity

was higher among older farmers and women. Moreover, signifying the presence of

economic constraints, the study has shown that the propensity of cultivating at least

one improved pigeonpea variety is high among farmers that have access to credit

services. These findings point to the importance of improving farmer’s access to finan-

cial markets that enable them to acquire credit to purchase improved seed. The policy

implication is that supporting farmers, particularly, women with credit and extension

services would significantly increase their participation in the cultivation of improved

pigeonpea.
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Endnotes
1The non-exposure bias results from the fact that farmers who have not been

exposed to a new technology cannot adopt it even if they might have done so if they

had known about it (Diagne, 2006).
2This section largely draws from Diagne and Demont (2007)
3In this study the adoption outcome is the adoption status (a dichotomous 0–1

variable).
4Note that as discussed earlier, the joint exposure and adoption parameter (JEA) is

consistently estimated by the sample average of the observed adoption outcome values:

J ÊA ¼ 1
n

Xn
i¼1

yi.

5Malawi is divided into eight Agricultural Development Divisions (ADDs) that form

different agro-ecological zones. These ADDs lie within the three regions of the country.

The ADDs constitute the primary management unit of extension services. The ADDs

are subdivided into Rural Development Projects (RDPs), which are further subdivided

into Extension Planning Areas (EPAs). The EPAs are further sub-devided into sections

Extension agents called Field Assistants supervise at the section level.
6In this study access to credit combines both formal credit from the bank or microfi-

nance institution and credit from informal sources such as friends and relatives.
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